NCDVal.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/bsize.h>
  35. #include <misc/balloc.h>
  36. #include <base/BLog.h>
  37. #include "NCDVal.h"
  38. #include <generated/blog_channel_NCDVal.h>
  39. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  40. {
  41. ASSERT(idx >= 0)
  42. ASSERT(idx < o->used)
  43. return (o->buf ? o->buf : o->fastbuf) + idx;
  44. }
  45. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, bsize_t alloc_size, NCDVal__idx align)
  46. {
  47. if (alloc_size.is_overflow) {
  48. return -1;
  49. }
  50. NCDVal__idx mod = o->used % align;
  51. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  52. if (alloc_size.value > NCDVAL_MAXIDX - align_extra) {
  53. return -1;
  54. }
  55. NCDVal__idx aligned_alloc_size = align_extra + alloc_size.value;
  56. if (aligned_alloc_size > o->size - o->used) {
  57. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  58. while (aligned_alloc_size > newsize - o->used) {
  59. if (newsize > NCDVAL_MAXIDX / 2) {
  60. return -1;
  61. }
  62. newsize *= 2;
  63. }
  64. char *newbuf;
  65. if (!o->buf) {
  66. newbuf = malloc(newsize);
  67. if (!newbuf) {
  68. return -1;
  69. }
  70. memcpy(newbuf, o->fastbuf, o->used);
  71. } else {
  72. newbuf = realloc(o->buf, newsize);
  73. if (!newbuf) {
  74. return -1;
  75. }
  76. }
  77. o->buf = newbuf;
  78. o->size = newsize;
  79. }
  80. NCDVal__idx idx = o->used + align_extra;
  81. o->used += aligned_alloc_size;
  82. return idx;
  83. }
  84. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  85. {
  86. ASSERT(idx == -1 || mem)
  87. NCDValRef ref = {mem, idx};
  88. return ref;
  89. }
  90. static void NCDVal__AssertMem (NCDValMem *mem)
  91. {
  92. ASSERT(mem)
  93. ASSERT(mem->size >= 0)
  94. ASSERT(mem->used >= 0)
  95. ASSERT(mem->used <= mem->size)
  96. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  97. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  98. }
  99. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  100. {
  101. #ifndef NDEBUG
  102. const char *e_cbuf = e_buf;
  103. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  104. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  105. #endif
  106. }
  107. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  108. {
  109. // placeholders
  110. if (idx < -1) {
  111. return;
  112. }
  113. ASSERT(idx >= 0)
  114. ASSERT(idx + sizeof(int) <= mem->used)
  115. #ifndef NDEBUG
  116. int *type_ptr = NCDValMem__BufAt(mem, idx);
  117. switch (*type_ptr) {
  118. case NCDVAL_STRING: {
  119. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  120. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  121. ASSERT(str_e->length >= 0)
  122. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  123. } break;
  124. case NCDVAL_LIST: {
  125. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  126. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  127. ASSERT(list_e->maxcount >= 0)
  128. ASSERT(list_e->count >= 0)
  129. ASSERT(list_e->count <= list_e->maxcount)
  130. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  131. } break;
  132. case NCDVAL_MAP: {
  133. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  134. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  135. ASSERT(map_e->maxcount >= 0)
  136. ASSERT(map_e->count >= 0)
  137. ASSERT(map_e->count <= map_e->maxcount)
  138. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  139. } break;
  140. default: ASSERT(0);
  141. }
  142. #endif
  143. }
  144. static void NCDVal__AssertVal (NCDValRef val)
  145. {
  146. NCDVal__AssertMem(val.mem);
  147. NCDVal__AssertValOnly(val.mem, val.idx);
  148. }
  149. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  150. {
  151. ASSERT(elemidx >= 0 || elemidx == -1)
  152. NCDValMapElem me = {elemidx};
  153. return me;
  154. }
  155. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  156. {
  157. #ifndef NDEBUG
  158. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  159. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  160. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  161. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  162. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  163. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  164. #endif
  165. }
  166. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  167. {
  168. ASSERT(NCDVal_IsMap(map))
  169. NCDVal__MapAssertElemOnly(map, me.elemidx);
  170. }
  171. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  172. {
  173. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  174. }
  175. #include "NCDVal_maptree.h"
  176. #include <structure/CAvl_impl.h>
  177. void NCDValMem_Init (NCDValMem *o)
  178. {
  179. o->buf = NULL;
  180. o->size = NCDVAL_FASTBUF_SIZE;
  181. o->used = 0;
  182. }
  183. void NCDValMem_Free (NCDValMem *o)
  184. {
  185. NCDVal__AssertMem(o);
  186. if (o->buf) {
  187. BFree(o->buf);
  188. }
  189. }
  190. int NCDValMem_FreeExport (NCDValMem *o, char **out_data, size_t *out_len)
  191. {
  192. NCDVal__AssertMem(o);
  193. ASSERT(out_data)
  194. ASSERT(out_len)
  195. if (o->buf) {
  196. *out_data = o->buf;
  197. } else {
  198. if (!(*out_data = BAlloc(o->used))) {
  199. return 0;
  200. }
  201. memcpy(*out_data, o->fastbuf, o->used);
  202. }
  203. *out_len = o->used;
  204. return 1;
  205. }
  206. int NCDValMem_InitImport (NCDValMem *o, const char *data, size_t len)
  207. {
  208. ASSERT(data)
  209. ASSERT(len <= NCDVAL_MAXIDX)
  210. if (len <= NCDVAL_FASTBUF_SIZE) {
  211. memcpy(o->fastbuf, data, len);
  212. o->buf = NULL;
  213. o->size = NCDVAL_FASTBUF_SIZE;
  214. } else {
  215. size_t cap = len;
  216. if (cap < NCDVAL_FIRST_SIZE) {
  217. cap = NCDVAL_FIRST_SIZE;
  218. }
  219. if (!(o->buf = BAlloc(cap))) {
  220. return 0;
  221. }
  222. memcpy(o->buf, data, len);
  223. o->size = cap;
  224. }
  225. o->used = len;
  226. return 1;
  227. }
  228. void NCDVal_Assert (NCDValRef val)
  229. {
  230. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  231. }
  232. int NCDVal_IsInvalid (NCDValRef val)
  233. {
  234. NCDVal_Assert(val);
  235. return (val.idx == -1);
  236. }
  237. int NCDVal_IsPlaceholder (NCDValRef val)
  238. {
  239. NCDVal_Assert(val);
  240. return (val.idx < -1);
  241. }
  242. int NCDVal_Type (NCDValRef val)
  243. {
  244. NCDVal__AssertVal(val);
  245. if (val.idx < -1) {
  246. return NCDVAL_PLACEHOLDER;
  247. }
  248. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  249. return *type_ptr;
  250. }
  251. NCDValRef NCDVal_NewInvalid (void)
  252. {
  253. NCDValRef ref = {NULL, -1};
  254. return ref;
  255. }
  256. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  257. {
  258. NCDVal__AssertMem(mem);
  259. ASSERT(plid >= 0)
  260. ASSERT(NCDVAL_MINIDX + plid < -1)
  261. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  262. return ref;
  263. }
  264. int NCDVal_PlaceholderId (NCDValRef val)
  265. {
  266. ASSERT(NCDVal_IsPlaceholder(val))
  267. return (val.idx - NCDVAL_MINIDX);
  268. }
  269. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  270. {
  271. NCDVal__AssertMem(mem);
  272. NCDVal__AssertVal(val);
  273. switch (NCDVal_Type(val)) {
  274. case NCDVAL_STRING: {
  275. size_t len = NCDVal_StringLength(val);
  276. NCDValRef copy = NCDVal_NewStringUninitialized(mem, len);
  277. if (NCDVal_IsInvalid(copy)) {
  278. goto fail;
  279. }
  280. memcpy((char *)NCDVal_StringValue(copy), NCDVal_StringValue(val), len);
  281. return copy;
  282. } break;
  283. case NCDVAL_LIST: {
  284. size_t count = NCDVal_ListCount(val);
  285. NCDValRef copy = NCDVal_NewList(mem, count);
  286. if (NCDVal_IsInvalid(copy)) {
  287. goto fail;
  288. }
  289. for (size_t i = 0; i < count; i++) {
  290. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal_ListGet(val, i));
  291. if (NCDVal_IsInvalid(elem_copy)) {
  292. goto fail;
  293. }
  294. NCDVal_ListAppend(copy, elem_copy);
  295. }
  296. return copy;
  297. } break;
  298. case NCDVAL_MAP: {
  299. size_t count = NCDVal_MapCount(val);
  300. NCDValRef copy = NCDVal_NewMap(mem, count);
  301. if (NCDVal_IsInvalid(copy)) {
  302. goto fail;
  303. }
  304. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  305. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  306. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  307. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  308. goto fail;
  309. }
  310. int res = NCDVal_MapInsert(copy, key_copy, val_copy);
  311. ASSERT_EXECUTE(res)
  312. }
  313. return copy;
  314. } break;
  315. case NCDVAL_PLACEHOLDER: {
  316. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  317. } break;
  318. default: ASSERT(0);
  319. }
  320. ASSERT(0);
  321. fail:
  322. return NCDVal_NewInvalid();
  323. }
  324. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  325. {
  326. NCDVal__AssertVal(val1);
  327. NCDVal__AssertVal(val2);
  328. int type1 = NCDVal_Type(val1);
  329. int type2 = NCDVal_Type(val2);
  330. if (type1 != type2) {
  331. return (type1 > type2) - (type1 < type2);
  332. }
  333. switch (type1) {
  334. case NCDVAL_STRING: {
  335. size_t len1 = NCDVal_StringLength(val1);
  336. size_t len2 = NCDVal_StringLength(val2);
  337. size_t min_len = len1 < len2 ? len1 : len2;
  338. int cmp = memcmp(NCDVal_StringValue(val1), NCDVal_StringValue(val2), min_len);
  339. if (cmp) {
  340. return (cmp > 0) - (cmp < 0);
  341. }
  342. return (len1 > len2) - (len1 < len2);
  343. } break;
  344. case NCDVAL_LIST: {
  345. size_t count1 = NCDVal_ListCount(val1);
  346. size_t count2 = NCDVal_ListCount(val2);
  347. size_t min_count = count1 < count2 ? count1 : count2;
  348. for (size_t i = 0; i < min_count; i++) {
  349. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  350. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  351. int cmp = NCDVal_Compare(ev1, ev2);
  352. if (cmp) {
  353. return cmp;
  354. }
  355. }
  356. return (count1 > count2) - (count1 < count2);
  357. } break;
  358. case NCDVAL_MAP: {
  359. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  360. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  361. while (1) {
  362. int inv1 = NCDVal_MapElemInvalid(e1);
  363. int inv2 = NCDVal_MapElemInvalid(e2);
  364. if (inv1 || inv2) {
  365. return inv2 - inv1;
  366. }
  367. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  368. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  369. int cmp = NCDVal_Compare(key1, key2);
  370. if (cmp) {
  371. return cmp;
  372. }
  373. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  374. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  375. cmp = NCDVal_Compare(value1, value2);
  376. if (cmp) {
  377. return cmp;
  378. }
  379. e1 = NCDVal_MapOrderedNext(val1, e1);
  380. e2 = NCDVal_MapOrderedNext(val2, e2);
  381. }
  382. } break;
  383. case NCDVAL_PLACEHOLDER: {
  384. int plid1 = NCDVal_PlaceholderId(val1);
  385. int plid2 = NCDVal_PlaceholderId(val2);
  386. return (plid1 > plid2) - (plid1 < plid2);
  387. } break;
  388. default:
  389. ASSERT(0);
  390. return 0;
  391. }
  392. }
  393. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  394. {
  395. NCDVal_Assert(val);
  396. NCDValSafeRef sval = {val.idx};
  397. return sval;
  398. }
  399. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  400. {
  401. NCDVal__AssertMem(mem);
  402. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  403. NCDValRef val = {mem, sval.idx};
  404. return val;
  405. }
  406. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  407. {
  408. NCDVal__AssertMem(mem);
  409. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  410. NCDValRef val2 = {mem, val.idx};
  411. return val2;
  412. }
  413. int NCDVal_IsString (NCDValRef val)
  414. {
  415. NCDVal__AssertVal(val);
  416. return NCDVal_Type(val) == NCDVAL_STRING;
  417. }
  418. int NCDVal_IsStringNoNulls (NCDValRef val)
  419. {
  420. NCDVal__AssertVal(val);
  421. return NCDVal_Type(val) == NCDVAL_STRING && strlen(NCDVal_StringValue(val)) == NCDVal_StringLength(val);
  422. }
  423. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  424. {
  425. NCDVal__AssertMem(mem);
  426. ASSERT(data)
  427. NCDVal_AssertExternal(mem, data, strlen(data));
  428. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  429. }
  430. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  431. {
  432. NCDVal__AssertMem(mem);
  433. ASSERT(len == 0 || data)
  434. NCDVal_AssertExternal(mem, data, len);
  435. if (len == SIZE_MAX) {
  436. goto fail;
  437. }
  438. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  439. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  440. if (idx < 0) {
  441. goto fail;
  442. }
  443. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  444. str_e->type = NCDVAL_STRING;
  445. str_e->length = len;
  446. if (len > 0) {
  447. memcpy(str_e->data, data, len);
  448. }
  449. str_e->data[len] = '\0';
  450. return NCDVal__Ref(mem, idx);
  451. fail:
  452. return NCDVal_NewInvalid();
  453. }
  454. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  455. {
  456. NCDVal__AssertMem(mem);
  457. if (len == SIZE_MAX) {
  458. goto fail;
  459. }
  460. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  461. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  462. if (idx < 0) {
  463. goto fail;
  464. }
  465. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  466. str_e->type = NCDVAL_STRING;
  467. str_e->length = len;
  468. str_e->data[len] = '\0';
  469. return NCDVal__Ref(mem, idx);
  470. fail:
  471. return NCDVal_NewInvalid();
  472. }
  473. const char * NCDVal_StringValue (NCDValRef string)
  474. {
  475. ASSERT(NCDVal_IsString(string))
  476. struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx);
  477. return str_e->data;
  478. }
  479. size_t NCDVal_StringLength (NCDValRef string)
  480. {
  481. ASSERT(NCDVal_IsString(string))
  482. struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx);
  483. return str_e->length;
  484. }
  485. int NCDVal_StringHasNulls (NCDValRef string)
  486. {
  487. ASSERT(NCDVal_IsString(string))
  488. return strlen(NCDVal_StringValue(string)) != NCDVal_StringLength(string);
  489. }
  490. int NCDVal_StringEquals (NCDValRef string, const char *data)
  491. {
  492. ASSERT(NCDVal_IsString(string))
  493. ASSERT(data)
  494. return !NCDVal_StringHasNulls(string) && !strcmp(NCDVal_StringValue(string), data);
  495. }
  496. int NCDVal_IsList (NCDValRef val)
  497. {
  498. NCDVal__AssertVal(val);
  499. return NCDVal_Type(val) == NCDVAL_LIST;
  500. }
  501. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  502. {
  503. NCDVal__AssertMem(mem);
  504. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__list)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(NCDVal__idx))));
  505. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  506. if (idx < 0) {
  507. goto fail;
  508. }
  509. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  510. list_e->type = NCDVAL_LIST;
  511. list_e->maxcount = maxcount;
  512. list_e->count = 0;
  513. return NCDVal__Ref(mem, idx);
  514. fail:
  515. return NCDVal_NewInvalid();
  516. }
  517. void NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  518. {
  519. ASSERT(NCDVal_IsList(list))
  520. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  521. ASSERT(elem.mem == list.mem)
  522. NCDVal__AssertValOnly(list.mem, elem.idx);
  523. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  524. list_e->elem_indices[list_e->count++] = elem.idx;
  525. }
  526. size_t NCDVal_ListCount (NCDValRef list)
  527. {
  528. ASSERT(NCDVal_IsList(list))
  529. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  530. return list_e->count;
  531. }
  532. size_t NCDVal_ListMaxCount (NCDValRef list)
  533. {
  534. ASSERT(NCDVal_IsList(list))
  535. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  536. return list_e->maxcount;
  537. }
  538. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  539. {
  540. ASSERT(NCDVal_IsList(list))
  541. ASSERT(pos < NCDVal_ListCount(list))
  542. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  543. ASSERT(pos < list_e->count)
  544. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  545. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  546. }
  547. int NCDVal_ListRead (NCDValRef list, int num, ...)
  548. {
  549. ASSERT(NCDVal_IsList(list))
  550. ASSERT(num >= 0)
  551. size_t count = NCDVal_ListCount(list);
  552. if (num != count) {
  553. return 0;
  554. }
  555. va_list ap;
  556. va_start(ap, num);
  557. for (int i = 0; i < num; i++) {
  558. NCDValRef *dest = va_arg(ap, NCDValRef *);
  559. *dest = NCDVal_ListGet(list, i);
  560. }
  561. va_end(ap);
  562. return 1;
  563. }
  564. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  565. {
  566. ASSERT(NCDVal_IsList(list))
  567. ASSERT(num >= 0)
  568. size_t count = NCDVal_ListCount(list);
  569. if (num > count) {
  570. return 0;
  571. }
  572. va_list ap;
  573. va_start(ap, num);
  574. for (int i = 0; i < num; i++) {
  575. NCDValRef *dest = va_arg(ap, NCDValRef *);
  576. *dest = NCDVal_ListGet(list, i);
  577. }
  578. va_end(ap);
  579. return 1;
  580. }
  581. int NCDVal_IsMap (NCDValRef val)
  582. {
  583. NCDVal__AssertVal(val);
  584. return NCDVal_Type(val) == NCDVAL_MAP;
  585. }
  586. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  587. {
  588. NCDVal__AssertMem(mem);
  589. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__map)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(struct NCDVal__mapelem))));
  590. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  591. if (idx < 0) {
  592. goto fail;
  593. }
  594. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  595. map_e->type = NCDVAL_MAP;
  596. map_e->maxcount = maxcount;
  597. map_e->count = 0;
  598. NCDVal__MapTree_Init(&map_e->tree);
  599. return NCDVal__Ref(mem, idx);
  600. fail:
  601. return NCDVal_NewInvalid();
  602. }
  603. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val)
  604. {
  605. ASSERT(NCDVal_IsMap(map))
  606. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  607. ASSERT(key.mem == map.mem)
  608. ASSERT(val.mem == map.mem)
  609. NCDVal__AssertValOnly(map.mem, key.idx);
  610. NCDVal__AssertValOnly(map.mem, val.idx);
  611. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  612. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  613. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  614. ASSERT(me_e == &map_e->elems[map_e->count])
  615. me_e->key_idx = key.idx;
  616. me_e->val_idx = val.idx;
  617. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  618. if (!res) {
  619. return 0;
  620. }
  621. map_e->count++;
  622. return 1;
  623. }
  624. size_t NCDVal_MapCount (NCDValRef map)
  625. {
  626. ASSERT(NCDVal_IsMap(map))
  627. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  628. return map_e->count;
  629. }
  630. size_t NCDVal_MapMaxCount (NCDValRef map)
  631. {
  632. ASSERT(NCDVal_IsMap(map))
  633. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  634. return map_e->maxcount;
  635. }
  636. int NCDVal_MapElemInvalid (NCDValMapElem me)
  637. {
  638. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  639. return me.elemidx < 0;
  640. }
  641. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  642. {
  643. ASSERT(NCDVal_IsMap(map))
  644. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  645. if (map_e->count == 0) {
  646. return NCDVal__MapElem(-1);
  647. }
  648. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  649. NCDVal__MapAssertElemOnly(map, elemidx);
  650. return NCDVal__MapElem(elemidx);
  651. }
  652. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  653. {
  654. NCDVal__MapAssertElem(map, me);
  655. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  656. ASSERT(map_e->count > 0)
  657. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  658. ASSERT(me.elemidx <= last_elemidx)
  659. if (me.elemidx == last_elemidx) {
  660. return NCDVal__MapElem(-1);
  661. }
  662. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  663. NCDVal__MapAssertElemOnly(map, elemidx);
  664. return NCDVal__MapElem(elemidx);
  665. }
  666. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  667. {
  668. ASSERT(NCDVal_IsMap(map))
  669. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  670. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  671. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  672. return NCDVal__MapElem(ref.link);
  673. }
  674. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  675. {
  676. NCDVal__MapAssertElem(map, me);
  677. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  678. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  679. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  680. return NCDVal__MapElem(ref.link);
  681. }
  682. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  683. {
  684. NCDVal__MapAssertElem(map, me);
  685. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  686. return NCDVal__Ref(map.mem, me_e->key_idx);
  687. }
  688. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  689. {
  690. NCDVal__MapAssertElem(map, me);
  691. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  692. return NCDVal__Ref(map.mem, me_e->val_idx);
  693. }
  694. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  695. {
  696. ASSERT(NCDVal_IsMap(map))
  697. NCDVal__AssertVal(key);
  698. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  699. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  700. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  701. return NCDVal__MapElem(ref.link);
  702. }
  703. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  704. {
  705. ASSERT(idx >= 0)
  706. NCDVal__AssertValOnly(mem, idx);
  707. ASSERT(out_num_instr)
  708. *out_num_instr = 0;
  709. void *ptr = NCDValMem__BufAt(mem, idx);
  710. struct NCDVal__instr instr;
  711. switch (*((int *)(ptr))) {
  712. case NCDVAL_STRING: {
  713. } break;
  714. case NCDVAL_LIST: {
  715. struct NCDVal__list *list_e = ptr;
  716. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  717. if (list_e->elem_indices[i] < -1) {
  718. if (prog) {
  719. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  720. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  721. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  722. prog->instrs[prog->num_instrs++] = instr;
  723. }
  724. (*out_num_instr)++;
  725. } else {
  726. size_t elem_num_instr;
  727. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  728. (*out_num_instr) += elem_num_instr;
  729. }
  730. }
  731. } break;
  732. case NCDVAL_MAP: {
  733. struct NCDVal__map *map_e = ptr;
  734. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  735. int need_reinsert = 0;
  736. if (map_e->elems[i].key_idx < -1) {
  737. if (prog) {
  738. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  739. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  740. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  741. prog->instrs[prog->num_instrs++] = instr;
  742. }
  743. (*out_num_instr)++;
  744. need_reinsert = 1;
  745. } else {
  746. size_t key_num_instr;
  747. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  748. (*out_num_instr) += key_num_instr;
  749. if (key_num_instr > 0) {
  750. need_reinsert = 1;
  751. }
  752. }
  753. if (map_e->elems[i].val_idx < -1) {
  754. if (prog) {
  755. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  756. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  757. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  758. prog->instrs[prog->num_instrs++] = instr;
  759. }
  760. (*out_num_instr)++;
  761. } else {
  762. size_t val_num_instr;
  763. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  764. (*out_num_instr) += val_num_instr;
  765. }
  766. if (need_reinsert) {
  767. if (prog) {
  768. instr.type = NCDVAL_INSTR_REINSERT;
  769. instr.reinsert.mapidx = idx;
  770. instr.reinsert.elempos = i;
  771. prog->instrs[prog->num_instrs++] = instr;
  772. }
  773. (*out_num_instr)++;
  774. }
  775. }
  776. } break;
  777. default: ASSERT(0);
  778. }
  779. }
  780. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  781. {
  782. NCDVal__AssertVal(val);
  783. ASSERT(!NCDVal_IsPlaceholder(val))
  784. size_t num_instrs;
  785. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  786. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  787. BLog(BLOG_ERROR, "BAllocArray failed");
  788. return 0;
  789. }
  790. o->num_instrs = 0;
  791. size_t num_instrs2;
  792. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  793. ASSERT(num_instrs2 == num_instrs)
  794. ASSERT(o->num_instrs == num_instrs)
  795. return 1;
  796. }
  797. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  798. {
  799. BFree(o->instrs);
  800. }
  801. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  802. {
  803. NCDVal__AssertMem(mem);
  804. ASSERT(replace)
  805. for (size_t i = 0; i < prog.num_instrs; i++) {
  806. struct NCDVal__instr instr = prog.instrs[i];
  807. if (instr.type == NCDVAL_INSTR_PLACEHOLDER) {
  808. #ifndef NDEBUG
  809. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  810. ASSERT(*check_plptr < -1)
  811. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  812. #endif
  813. NCDValRef repval;
  814. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  815. return 0;
  816. }
  817. ASSERT(repval.mem == mem)
  818. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  819. *plptr = repval.idx;
  820. } else {
  821. ASSERT(instr.type == NCDVAL_INSTR_REINSERT)
  822. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  823. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  824. ASSERT(map_e->type == NCDVAL_MAP)
  825. ASSERT(instr.reinsert.elempos >= 0)
  826. ASSERT(instr.reinsert.elempos < map_e->count)
  827. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  828. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  829. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  830. BLog(BLOG_ERROR, "duplicate key in map");
  831. return 0;
  832. }
  833. }
  834. }
  835. return 1;
  836. }