/** * @file NCDVal.c * @author Ambroz Bizjak * * @section LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include "NCDVal.h" #include static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx) { ASSERT(idx >= 0) ASSERT(idx < o->used) return (o->buf ? o->buf : o->fastbuf) + idx; } static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, bsize_t alloc_size, NCDVal__idx align) { if (alloc_size.is_overflow) { return -1; } NCDVal__idx mod = o->used % align; NCDVal__idx align_extra = mod ? (align - mod) : 0; if (alloc_size.value > NCDVAL_MAXIDX - align_extra) { return -1; } NCDVal__idx aligned_alloc_size = align_extra + alloc_size.value; if (aligned_alloc_size > o->size - o->used) { NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE); while (aligned_alloc_size > newsize - o->used) { if (newsize > NCDVAL_MAXIDX / 2) { return -1; } newsize *= 2; } char *newbuf; if (!o->buf) { newbuf = malloc(newsize); if (!newbuf) { return -1; } memcpy(newbuf, o->fastbuf, o->used); } else { newbuf = realloc(o->buf, newsize); if (!newbuf) { return -1; } } o->buf = newbuf; o->size = newsize; } NCDVal__idx idx = o->used + align_extra; o->used += aligned_alloc_size; return idx; } static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx) { ASSERT(idx == -1 || mem) NCDValRef ref = {mem, idx}; return ref; } static void NCDVal__AssertMem (NCDValMem *mem) { ASSERT(mem) ASSERT(mem->size >= 0) ASSERT(mem->used >= 0) ASSERT(mem->used <= mem->size) ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE) ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE) } static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len) { #ifndef NDEBUG const char *e_cbuf = e_buf; char *buf = (mem->buf ? mem->buf : mem->fastbuf); ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf) #endif } static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx) { // placeholders if (idx < -1) { return; } ASSERT(idx >= 0) ASSERT(idx + sizeof(int) <= mem->used) #ifndef NDEBUG int *type_ptr = NCDValMem__BufAt(mem, idx); switch (*type_ptr) { case NCDVAL_STRING: { ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used) struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx); ASSERT(str_e->length >= 0) ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used) } break; case NCDVAL_LIST: { ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used) struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx); ASSERT(list_e->maxcount >= 0) ASSERT(list_e->count >= 0) ASSERT(list_e->count <= list_e->maxcount) ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used) } break; case NCDVAL_MAP: { ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used) struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx); ASSERT(map_e->maxcount >= 0) ASSERT(map_e->count >= 0) ASSERT(map_e->count <= map_e->maxcount) ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used) } break; default: ASSERT(0); } #endif } static void NCDVal__AssertVal (NCDValRef val) { NCDVal__AssertMem(val.mem); NCDVal__AssertValOnly(val.mem, val.idx); } static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx) { ASSERT(elemidx >= 0 || elemidx == -1) NCDValMapElem me = {elemidx}; return me; } static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx) { #ifndef NDEBUG struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems)) ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem)) struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx); NCDVal__AssertValOnly(map.mem, me_e->key_idx); NCDVal__AssertValOnly(map.mem, me_e->val_idx); #endif } static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me) { ASSERT(NCDVal_IsMap(map)) NCDVal__MapAssertElemOnly(map, me.elemidx); } static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos) { return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem); } #include "NCDVal_maptree.h" #include void NCDValMem_Init (NCDValMem *o) { o->buf = NULL; o->size = NCDVAL_FASTBUF_SIZE; o->used = 0; } void NCDValMem_Free (NCDValMem *o) { NCDVal__AssertMem(o); if (o->buf) { BFree(o->buf); } } int NCDValMem_FreeExport (NCDValMem *o, char **out_data, size_t *out_len) { NCDVal__AssertMem(o); ASSERT(out_data) ASSERT(out_len) if (o->buf) { *out_data = o->buf; } else { if (!(*out_data = BAlloc(o->used))) { return 0; } memcpy(*out_data, o->fastbuf, o->used); } *out_len = o->used; return 1; } int NCDValMem_InitImport (NCDValMem *o, const char *data, size_t len) { ASSERT(data) ASSERT(len <= NCDVAL_MAXIDX) if (len <= NCDVAL_FASTBUF_SIZE) { memcpy(o->fastbuf, data, len); o->buf = NULL; o->size = NCDVAL_FASTBUF_SIZE; } else { size_t cap = len; if (cap < NCDVAL_FIRST_SIZE) { cap = NCDVAL_FIRST_SIZE; } if (!(o->buf = BAlloc(cap))) { return 0; } memcpy(o->buf, data, len); o->size = cap; } o->used = len; return 1; } void NCDVal_Assert (NCDValRef val) { ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1)) } int NCDVal_IsInvalid (NCDValRef val) { NCDVal_Assert(val); return (val.idx == -1); } int NCDVal_IsPlaceholder (NCDValRef val) { NCDVal_Assert(val); return (val.idx < -1); } int NCDVal_Type (NCDValRef val) { NCDVal__AssertVal(val); if (val.idx < -1) { return NCDVAL_PLACEHOLDER; } int *type_ptr = NCDValMem__BufAt(val.mem, val.idx); return *type_ptr; } NCDValRef NCDVal_NewInvalid (void) { NCDValRef ref = {NULL, -1}; return ref; } NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid) { NCDVal__AssertMem(mem); ASSERT(plid >= 0) ASSERT(NCDVAL_MINIDX + plid < -1) NCDValRef ref = {mem, NCDVAL_MINIDX + plid}; return ref; } int NCDVal_PlaceholderId (NCDValRef val) { ASSERT(NCDVal_IsPlaceholder(val)) return (val.idx - NCDVAL_MINIDX); } NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val) { NCDVal__AssertMem(mem); NCDVal__AssertVal(val); switch (NCDVal_Type(val)) { case NCDVAL_STRING: { size_t len = NCDVal_StringLength(val); NCDValRef copy = NCDVal_NewStringUninitialized(mem, len); if (NCDVal_IsInvalid(copy)) { goto fail; } memcpy((char *)NCDVal_StringValue(copy), NCDVal_StringValue(val), len); return copy; } break; case NCDVAL_LIST: { size_t count = NCDVal_ListCount(val); NCDValRef copy = NCDVal_NewList(mem, count); if (NCDVal_IsInvalid(copy)) { goto fail; } for (size_t i = 0; i < count; i++) { NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal_ListGet(val, i)); if (NCDVal_IsInvalid(elem_copy)) { goto fail; } NCDVal_ListAppend(copy, elem_copy); } return copy; } break; case NCDVAL_MAP: { size_t count = NCDVal_MapCount(val); NCDValRef copy = NCDVal_NewMap(mem, count); if (NCDVal_IsInvalid(copy)) { goto fail; } for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) { NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e)); NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e)); if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) { goto fail; } int res = NCDVal_MapInsert(copy, key_copy, val_copy); ASSERT_EXECUTE(res) } return copy; } break; case NCDVAL_PLACEHOLDER: { return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val)); } break; default: ASSERT(0); } ASSERT(0); fail: return NCDVal_NewInvalid(); } int NCDVal_Compare (NCDValRef val1, NCDValRef val2) { NCDVal__AssertVal(val1); NCDVal__AssertVal(val2); int type1 = NCDVal_Type(val1); int type2 = NCDVal_Type(val2); if (type1 != type2) { return (type1 > type2) - (type1 < type2); } switch (type1) { case NCDVAL_STRING: { size_t len1 = NCDVal_StringLength(val1); size_t len2 = NCDVal_StringLength(val2); size_t min_len = len1 < len2 ? len1 : len2; int cmp = memcmp(NCDVal_StringValue(val1), NCDVal_StringValue(val2), min_len); if (cmp) { return (cmp > 0) - (cmp < 0); } return (len1 > len2) - (len1 < len2); } break; case NCDVAL_LIST: { size_t count1 = NCDVal_ListCount(val1); size_t count2 = NCDVal_ListCount(val2); size_t min_count = count1 < count2 ? count1 : count2; for (size_t i = 0; i < min_count; i++) { NCDValRef ev1 = NCDVal_ListGet(val1, i); NCDValRef ev2 = NCDVal_ListGet(val2, i); int cmp = NCDVal_Compare(ev1, ev2); if (cmp) { return cmp; } } return (count1 > count2) - (count1 < count2); } break; case NCDVAL_MAP: { NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1); NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2); while (1) { int inv1 = NCDVal_MapElemInvalid(e1); int inv2 = NCDVal_MapElemInvalid(e2); if (inv1 || inv2) { return inv2 - inv1; } NCDValRef key1 = NCDVal_MapElemKey(val1, e1); NCDValRef key2 = NCDVal_MapElemKey(val2, e2); int cmp = NCDVal_Compare(key1, key2); if (cmp) { return cmp; } NCDValRef value1 = NCDVal_MapElemVal(val1, e1); NCDValRef value2 = NCDVal_MapElemVal(val2, e2); cmp = NCDVal_Compare(value1, value2); if (cmp) { return cmp; } e1 = NCDVal_MapOrderedNext(val1, e1); e2 = NCDVal_MapOrderedNext(val2, e2); } } break; case NCDVAL_PLACEHOLDER: { int plid1 = NCDVal_PlaceholderId(val1); int plid2 = NCDVal_PlaceholderId(val2); return (plid1 > plid2) - (plid1 < plid2); } break; default: ASSERT(0); return 0; } } NCDValSafeRef NCDVal_ToSafe (NCDValRef val) { NCDVal_Assert(val); NCDValSafeRef sval = {val.idx}; return sval; } NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval) { NCDVal__AssertMem(mem); ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1)) NCDValRef val = {mem, sval.idx}; return val; } NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val) { NCDVal__AssertMem(mem); ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1)) NCDValRef val2 = {mem, val.idx}; return val2; } int NCDVal_IsString (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_STRING; } int NCDVal_IsStringNoNulls (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_STRING && strlen(NCDVal_StringValue(val)) == NCDVal_StringLength(val); } NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data) { NCDVal__AssertMem(mem); ASSERT(data) NCDVal_AssertExternal(mem, data, strlen(data)); return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data)); } NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len) { NCDVal__AssertMem(mem); ASSERT(len == 0 || data) NCDVal_AssertExternal(mem, data, len); if (len == SIZE_MAX) { goto fail; } bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1)); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string)); if (idx < 0) { goto fail; } struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx); str_e->type = NCDVAL_STRING; str_e->length = len; if (len > 0) { memcpy(str_e->data, data, len); } str_e->data[len] = '\0'; return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len) { NCDVal__AssertMem(mem); if (len == SIZE_MAX) { goto fail; } bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1)); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string)); if (idx < 0) { goto fail; } struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx); str_e->type = NCDVAL_STRING; str_e->length = len; str_e->data[len] = '\0'; return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } const char * NCDVal_StringValue (NCDValRef string) { ASSERT(NCDVal_IsString(string)) struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx); return str_e->data; } size_t NCDVal_StringLength (NCDValRef string) { ASSERT(NCDVal_IsString(string)) struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx); return str_e->length; } int NCDVal_StringHasNulls (NCDValRef string) { ASSERT(NCDVal_IsString(string)) return strlen(NCDVal_StringValue(string)) != NCDVal_StringLength(string); } int NCDVal_StringEquals (NCDValRef string, const char *data) { ASSERT(NCDVal_IsString(string)) ASSERT(data) return !NCDVal_StringHasNulls(string) && !strcmp(NCDVal_StringValue(string), data); } int NCDVal_IsList (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_LIST; } NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount) { NCDVal__AssertMem(mem); bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__list)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(NCDVal__idx)))); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list)); if (idx < 0) { goto fail; } struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx); list_e->type = NCDVAL_LIST; list_e->maxcount = maxcount; list_e->count = 0; return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } void NCDVal_ListAppend (NCDValRef list, NCDValRef elem) { ASSERT(NCDVal_IsList(list)) ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list)) ASSERT(elem.mem == list.mem) NCDVal__AssertValOnly(list.mem, elem.idx); struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); list_e->elem_indices[list_e->count++] = elem.idx; } size_t NCDVal_ListCount (NCDValRef list) { ASSERT(NCDVal_IsList(list)) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); return list_e->count; } size_t NCDVal_ListMaxCount (NCDValRef list) { ASSERT(NCDVal_IsList(list)) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); return list_e->maxcount; } NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos) { ASSERT(NCDVal_IsList(list)) ASSERT(pos < NCDVal_ListCount(list)) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); ASSERT(pos < list_e->count) NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]); return NCDVal__Ref(list.mem, list_e->elem_indices[pos]); } int NCDVal_ListRead (NCDValRef list, int num, ...) { ASSERT(NCDVal_IsList(list)) ASSERT(num >= 0) size_t count = NCDVal_ListCount(list); if (num != count) { return 0; } va_list ap; va_start(ap, num); for (int i = 0; i < num; i++) { NCDValRef *dest = va_arg(ap, NCDValRef *); *dest = NCDVal_ListGet(list, i); } va_end(ap); return 1; } int NCDVal_ListReadHead (NCDValRef list, int num, ...) { ASSERT(NCDVal_IsList(list)) ASSERT(num >= 0) size_t count = NCDVal_ListCount(list); if (num > count) { return 0; } va_list ap; va_start(ap, num); for (int i = 0; i < num; i++) { NCDValRef *dest = va_arg(ap, NCDValRef *); *dest = NCDVal_ListGet(list, i); } va_end(ap); return 1; } int NCDVal_IsMap (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_MAP; } NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount) { NCDVal__AssertMem(mem); bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__map)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(struct NCDVal__mapelem)))); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map)); if (idx < 0) { goto fail; } struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx); map_e->type = NCDVAL_MAP; map_e->maxcount = maxcount; map_e->count = 0; NCDVal__MapTree_Init(&map_e->tree); return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val) { ASSERT(NCDVal_IsMap(map)) ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map)) ASSERT(key.mem == map.mem) ASSERT(val.mem == map.mem) NCDVal__AssertValOnly(map.mem, key.idx); NCDVal__AssertValOnly(map.mem, val.idx); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count); struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx); ASSERT(me_e == &map_e->elems[map_e->count]) me_e->key_idx = key.idx; me_e->val_idx = val.idx; int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL); if (!res) { return 0; } map_e->count++; return 1; } size_t NCDVal_MapCount (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); return map_e->count; } size_t NCDVal_MapMaxCount (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); return map_e->maxcount; } int NCDVal_MapElemInvalid (NCDValMapElem me) { ASSERT(me.elemidx >= 0 || me.elemidx == -1) return me.elemidx < 0; } NCDValMapElem NCDVal_MapFirst (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); if (map_e->count == 0) { return NCDVal__MapElem(-1); } NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0); NCDVal__MapAssertElemOnly(map, elemidx); return NCDVal__MapElem(elemidx); } NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); ASSERT(map_e->count > 0) NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1); ASSERT(me.elemidx <= last_elemidx) if (me.elemidx == last_elemidx) { return NCDVal__MapElem(-1); } NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem); NCDVal__MapAssertElemOnly(map, elemidx); return NCDVal__MapElem(elemidx); } NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem); ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1)) return NCDVal__MapElem(ref.link); } NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx)); ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1)) return NCDVal__MapElem(ref.link); } NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx); return NCDVal__Ref(map.mem, me_e->key_idx); } NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx); return NCDVal__Ref(map.mem, me_e->val_idx); } NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key) { ASSERT(NCDVal_IsMap(map)) NCDVal__AssertVal(key); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key); ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1)) return NCDVal__MapElem(ref.link); } static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog) { ASSERT(idx >= 0) NCDVal__AssertValOnly(mem, idx); ASSERT(out_num_instr) *out_num_instr = 0; void *ptr = NCDValMem__BufAt(mem, idx); struct NCDVal__instr instr; switch (*((int *)(ptr))) { case NCDVAL_STRING: { } break; case NCDVAL_LIST: { struct NCDVal__list *list_e = ptr; for (NCDVal__idx i = 0; i < list_e->count; i++) { if (list_e->elem_indices[i] < -1) { if (prog) { instr.type = NCDVAL_INSTR_PLACEHOLDER; instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX; instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; } else { size_t elem_num_instr; replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog); (*out_num_instr) += elem_num_instr; } } } break; case NCDVAL_MAP: { struct NCDVal__map *map_e = ptr; for (NCDVal__idx i = 0; i < map_e->count; i++) { int need_reinsert = 0; if (map_e->elems[i].key_idx < -1) { if (prog) { instr.type = NCDVAL_INSTR_PLACEHOLDER; instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX; instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; need_reinsert = 1; } else { size_t key_num_instr; replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog); (*out_num_instr) += key_num_instr; if (key_num_instr > 0) { need_reinsert = 1; } } if (map_e->elems[i].val_idx < -1) { if (prog) { instr.type = NCDVAL_INSTR_PLACEHOLDER; instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX; instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; } else { size_t val_num_instr; replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog); (*out_num_instr) += val_num_instr; } if (need_reinsert) { if (prog) { instr.type = NCDVAL_INSTR_REINSERT; instr.reinsert.mapidx = idx; instr.reinsert.elempos = i; prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; } } } break; default: ASSERT(0); } } int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val) { NCDVal__AssertVal(val); ASSERT(!NCDVal_IsPlaceholder(val)) size_t num_instrs; replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL); if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) { BLog(BLOG_ERROR, "BAllocArray failed"); return 0; } o->num_instrs = 0; size_t num_instrs2; replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o); ASSERT(num_instrs2 == num_instrs) ASSERT(o->num_instrs == num_instrs) return 1; } void NCDValReplaceProg_Free (NCDValReplaceProg *o) { BFree(o->instrs); } int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg) { NCDVal__AssertMem(mem); ASSERT(replace) for (size_t i = 0; i < prog.num_instrs; i++) { struct NCDVal__instr instr = prog.instrs[i]; if (instr.type == NCDVAL_INSTR_PLACEHOLDER) { #ifndef NDEBUG NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx); ASSERT(*check_plptr < -1) ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid) #endif NCDValRef repval; if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) { return 0; } ASSERT(repval.mem == mem) NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx); *plptr = repval.idx; } else { ASSERT(instr.type == NCDVAL_INSTR_REINSERT) NCDVal__AssertValOnly(mem, instr.reinsert.mapidx); struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx); ASSERT(map_e->type == NCDVAL_MAP) ASSERT(instr.reinsert.elempos >= 0) ASSERT(instr.reinsert.elempos < map_e->count) NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)}; NCDVal__MapTree_Remove(&map_e->tree, mem, ref); if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) { BLog(BLOG_ERROR, "duplicate key in map"); return 0; } } } return 1; }