crypto.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #ifndef CONFIG
  2. #define CONFIG "config.h"
  3. #endif // CONFIG
  4. #include CONFIG
  5. #include "crypto.h"
  6. #include "endian.h"
  7. #include <stdint.h>
  8. const BYTE AesKeyV4[] = {
  9. 0x05, 0x3D, 0x83, 0x07, 0xF9, 0xE5, 0xF0, 0x88, 0xEB, 0x5E, 0xA6, 0x68, 0x6C, 0xF0, 0x37, 0xC7, 0xE4, 0xEF, 0xD2, 0xD6};
  10. const BYTE AesKeyV5[] = {
  11. 0xCD, 0x7E, 0x79, 0x6F, 0x2A, 0xB2, 0x5D, 0xCB, 0x55, 0xFF, 0xC8, 0xEF, 0x83, 0x64, 0xC4, 0x70 };
  12. const BYTE AesKeyV6[] = {
  13. 0xA9, 0x4A, 0x41, 0x95, 0xE2, 0x01, 0x43, 0x2D, 0x9B, 0xCB, 0x46, 0x04, 0x05, 0xD8, 0x4A, 0x21 };
  14. static const BYTE SBox[] = {
  15. 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B,
  16. 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
  17. 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26,
  18. 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
  19. 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,
  20. 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
  21. 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED,
  22. 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
  23. 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F,
  24. 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
  25. 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
  26. 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
  27. 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
  28. 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
  29. 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,
  30. 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
  31. 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F,
  32. 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
  33. 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11,
  34. 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
  35. 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F,
  36. 0xB0, 0x54, 0xBB, 0x16
  37. };
  38. void XorBlock(const BYTE *const in, const BYTE *out) // Ensure that this is always 32 bit aligned
  39. {
  40. /*UAA64( out, 0 ) ^= UAA64( in, 0 );
  41. UAA64( out, 1 ) ^= UAA64( in, 1 );*/
  42. uint_fast8_t i;
  43. for (i = 0; i < AES_BLOCK_WORDS; i++)
  44. {
  45. ((DWORD*)out)[i] ^= ((DWORD*)in)[i];
  46. }
  47. }
  48. #define AddRoundKey(d, rk) XorBlock((const BYTE *)rk, (const BYTE *)d)
  49. #define Mul2(word) (((word & 0x7f7f7f7f) << 1) ^ (((word & 0x80808080) >> 7) * 0x1b))
  50. #define Mul3(word) (Mul2(word) ^ word)
  51. #define Mul4(word) (Mul2(Mul2(word)))
  52. #define Mul8(word) (Mul2(Mul2(Mul2(word))))
  53. #define Mul9(word) (Mul8(word) ^ word)
  54. #define MulB(word) (Mul8(word) ^ Mul3(word))
  55. #define MulD(word) (Mul8(word) ^ Mul4(word) ^ word)
  56. #define MulE(word) (Mul8(word) ^ Mul4(word) ^ Mul2(word))
  57. //32 bit Galois Multiplication (generates bigger code than Macros)
  58. /*static DWORD Mul(DWORD x, DWORD y)
  59. {
  60. DWORD result = x, yTemp = y, log2;
  61. if (!y) return 0;
  62. for (log2 = 0; yTemp >>= 1; log2++ )
  63. {
  64. result = Mul2(result);
  65. }
  66. return result ^ Mul(x, y - (1 << log2));
  67. }*/
  68. void MixColumnsR(BYTE *restrict state)
  69. {
  70. uint_fast8_t i = 0;
  71. for (; i < AES_BLOCK_WORDS; i++)
  72. {
  73. #if defined(_CRYPTO_OPENSSL) && defined(_OPENSSL_SOFTWARE) && defined(_USE_AES_FROM_OPENSSL) //Always byte swap regardless of endianess
  74. DWORD word = BS32(((DWORD *) state)[i]);
  75. ((DWORD *) state)[i] = BS32(MulE(word) ^ ROR32(MulB(word), 8) ^ ROR32(MulD(word), 16) ^ ROR32(Mul9(word), 24));
  76. #else
  77. DWORD word = LE32(((DWORD *) state)[i]);
  78. ((DWORD *) state)[i] = LE32(MulE(word) ^ ROR32(MulB(word), 8) ^ ROR32(MulD(word), 16) ^ ROR32(Mul9(word), 24));
  79. #endif
  80. }
  81. }
  82. static DWORD SubDword(DWORD v)
  83. {
  84. BYTE *b = (BYTE *)&v;
  85. uint_fast8_t i = 0;
  86. for (; i < sizeof(DWORD); i++) b[i] = SBox[b[i]];
  87. return v;
  88. }
  89. void AesInitKey(AesCtx *Ctx, const BYTE *Key, int_fast8_t IsV6, int RijndaelKeyBytes)
  90. {
  91. int RijndaelKeyDwords = RijndaelKeyBytes / sizeof(DWORD);
  92. Ctx->rounds = (uint_fast8_t)(RijndaelKeyDwords + 6);
  93. static const DWORD RCon[] = {
  94. 0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
  95. 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 };
  96. uint_fast8_t i;
  97. DWORD temp;
  98. memcpy(Ctx->Key, Key, RijndaelKeyBytes);
  99. for ( i = RijndaelKeyDwords; i < ( Ctx->rounds + 1 ) << 2; i++ )
  100. {
  101. temp = Ctx->Key[ i - 1 ];
  102. if ( ( i % RijndaelKeyDwords ) == 0 )
  103. temp = BE32( SubDword( ROR32( BE32(temp), 24) ) ^ RCon[ i / RijndaelKeyDwords ] );
  104. Ctx->Key[ i ] = Ctx->Key[ i - RijndaelKeyDwords ] ^ temp;
  105. }
  106. if ( IsV6 )
  107. {
  108. BYTE *_p = (BYTE *)Ctx->Key;
  109. _p[ 4 * 16 ] ^= 0x73;
  110. _p[ 6 * 16 ] ^= 0x09;
  111. _p[ 8 * 16 ] ^= 0xE4;
  112. }
  113. }
  114. #if !defined(_CRYPTO_OPENSSL) || !defined(_USE_AES_FROM_OPENSSL) || defined(_OPENSSL_SOFTWARE)
  115. static void SubBytes(BYTE *block)
  116. {
  117. uint_fast8_t i;
  118. for (i = 0; i < AES_BLOCK_BYTES; i++)
  119. block[i] = SBox[ block[i] ];
  120. }
  121. static void ShiftRows(BYTE *state)
  122. {
  123. BYTE bIn[AES_BLOCK_BYTES];
  124. uint_fast8_t i;
  125. memcpy(bIn, state, AES_BLOCK_BYTES);
  126. for (i = 0; i < AES_BLOCK_BYTES; i++)
  127. {
  128. state[i] = bIn[(i + ((i & 3) << 2)) & 0xf];
  129. }
  130. };
  131. static void MixColumns(BYTE *state)
  132. {
  133. uint_fast8_t i = 0;
  134. for (; i < AES_BLOCK_WORDS; i++)
  135. {
  136. DWORD word = LE32(((DWORD *) state)[i]);
  137. ((DWORD *) state)[i] = LE32(Mul2(word) ^ ROR32(Mul3(word), 8) ^ ROR32(word, 16) ^ ROR32(word, 24));
  138. }
  139. }
  140. void AesEncryptBlock(const AesCtx *const Ctx, BYTE *block)
  141. {
  142. uint_fast8_t i;
  143. for ( i = 0 ;; i += 4 )
  144. {
  145. AddRoundKey(block, &Ctx->Key[ i ]);
  146. SubBytes(block);
  147. ShiftRows(block);
  148. if ( i >= ( Ctx->rounds - 1 ) << 2 ) break;
  149. MixColumns(block);
  150. }
  151. AddRoundKey(block, &Ctx->Key[ Ctx->rounds << 2 ]);
  152. }
  153. void AesCmacV4(BYTE *Message, size_t MessageSize, BYTE *MacOut)
  154. {
  155. size_t i;
  156. BYTE mac[AES_BLOCK_BYTES];
  157. AesCtx Ctx;
  158. AesInitKey(&Ctx, AesKeyV4, FALSE, V4_KEY_BYTES);
  159. memset(mac, 0, sizeof(mac));
  160. memset(Message + MessageSize, 0, AES_BLOCK_BYTES);
  161. Message[MessageSize] = 0x80;
  162. for (i = 0; i <= MessageSize; i += AES_BLOCK_BYTES)
  163. {
  164. XorBlock(Message + i, mac);
  165. AesEncryptBlock(&Ctx, mac);
  166. }
  167. memcpy(MacOut, mac, AES_BLOCK_BYTES);
  168. }
  169. #endif
  170. #if !defined(_CRYPTO_OPENSSL) || !defined(_USE_AES_FROM_OPENSSL)
  171. static const BYTE SBoxR[] = {
  172. 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
  173. 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
  174. 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32,
  175. 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
  176. 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49,
  177. 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
  178. 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
  179. 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
  180. 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05,
  181. 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
  182. 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
  183. 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
  184. 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
  185. 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
  186. 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B,
  187. 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
  188. 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59,
  189. 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
  190. 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
  191. 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
  192. 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63,
  193. 0x55, 0x21, 0x0C, 0x7D
  194. };
  195. static void ShiftRowsR(BYTE *state)
  196. {
  197. BYTE b[AES_BLOCK_BYTES];
  198. uint_fast8_t i;
  199. memcpy(b, state, AES_BLOCK_BYTES);
  200. for (i = 0; i < AES_BLOCK_BYTES; i++)
  201. state[i] = b[(i - ((i & 0x3) << 2)) & 0xf];
  202. }
  203. static void SubBytesR(BYTE *block)
  204. {
  205. uint_fast8_t i;
  206. for (i = 0; i < AES_BLOCK_BYTES; i++)
  207. block[i] = SBoxR[ block[i] ];
  208. }
  209. void AesEncryptCbc(const AesCtx *const Ctx, BYTE *restrict iv, BYTE *restrict data, size_t *restrict len)
  210. {
  211. // Pad up to blocksize inclusive
  212. size_t i;
  213. uint_fast8_t pad = (~*len & (AES_BLOCK_BYTES - 1)) + 1;
  214. #if defined(__GNUC__) && (__GNUC__ == 4 && __GNUC_MINOR__ == 8) // gcc 4.8 memset bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56977
  215. for (i = 0; i < pad; i++) data[*len + i] = pad;
  216. #else
  217. memset(data + *len, pad, pad);
  218. #endif
  219. *len += pad;
  220. if ( iv ) XorBlock(iv, data);
  221. AesEncryptBlock(Ctx, data);
  222. for (i = *len - AES_BLOCK_BYTES; i; i -= AES_BLOCK_BYTES)
  223. {
  224. XorBlock(data, data + AES_BLOCK_BYTES);
  225. data += AES_BLOCK_BYTES;
  226. AesEncryptBlock(Ctx, data);
  227. }
  228. }
  229. void AesDecryptBlock(const AesCtx *const Ctx, BYTE *block)
  230. {
  231. uint_fast8_t i;
  232. AddRoundKey(block, &Ctx->Key[ Ctx->rounds << 2 ]);
  233. for ( i = ( Ctx->rounds - 1 ) << 2 ;; i -= 4 )
  234. {
  235. ShiftRowsR(block);
  236. SubBytesR(block);
  237. AddRoundKey(block, &Ctx->Key[ i ]);
  238. if ( i == 0 ) break;
  239. MixColumnsR(block);
  240. }
  241. }
  242. void AesDecryptCbc(const AesCtx *const Ctx, BYTE *iv, BYTE *data, size_t len)
  243. {
  244. BYTE *cc;
  245. for (cc = data + len - AES_BLOCK_BYTES; cc > data; cc -= AES_BLOCK_BYTES)
  246. {
  247. AesDecryptBlock(Ctx, cc);
  248. XorBlock(cc - AES_BLOCK_BYTES, cc);
  249. }
  250. AesDecryptBlock(Ctx, cc);
  251. if ( iv ) XorBlock(iv, cc);
  252. }
  253. #endif // _CRYPTO_OPENSSL || OPENSSL_VERSION_NUMBER < 0x10000000L