NCDVal.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/balloc.h>
  35. #include <misc/strdup.h>
  36. #include <misc/offset.h>
  37. #include <base/BLog.h>
  38. #include "NCDVal.h"
  39. #include <generated/blog_channel_NCDVal.h>
  40. #define TYPE_MASK_EXTERNAL_TYPE ((1 << 3) - 1)
  41. #define TYPE_MASK_INTERNAL_TYPE ((1 << 5) - 1)
  42. #define TYPE_SHIFT_DEPTH 5
  43. #define STOREDSTRING_TYPE (NCDVAL_STRING | (0 << 3))
  44. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  45. #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3))
  46. #define COMPOSEDSTRING_TYPE (NCDVAL_STRING | (3 << 3))
  47. static int make_type (int internal_type, int depth)
  48. {
  49. ASSERT(internal_type == NCDVAL_LIST ||
  50. internal_type == NCDVAL_MAP ||
  51. internal_type == STOREDSTRING_TYPE ||
  52. internal_type == IDSTRING_TYPE ||
  53. internal_type == EXTERNALSTRING_TYPE ||
  54. internal_type == COMPOSEDSTRING_TYPE)
  55. ASSERT(depth >= 0)
  56. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  57. return (internal_type | (depth << TYPE_SHIFT_DEPTH));
  58. }
  59. static int get_external_type (int type)
  60. {
  61. return (type & TYPE_MASK_EXTERNAL_TYPE);
  62. }
  63. static int get_internal_type (int type)
  64. {
  65. return (type & TYPE_MASK_INTERNAL_TYPE);
  66. }
  67. static int get_depth (int type)
  68. {
  69. return (type >> TYPE_SHIFT_DEPTH);
  70. }
  71. static int bump_depth (int *type_ptr, int elem_depth)
  72. {
  73. if (get_depth(*type_ptr) < elem_depth + 1) {
  74. if (elem_depth + 1 > NCDVAL_MAX_DEPTH) {
  75. return 0;
  76. }
  77. *type_ptr = make_type(get_internal_type(*type_ptr), elem_depth + 1);
  78. }
  79. return 1;
  80. }
  81. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  82. {
  83. ASSERT(idx >= 0)
  84. ASSERT(idx < o->used)
  85. return (o->buf ? o->buf : o->fastbuf) + idx;
  86. }
  87. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, NCDVal__idx alloc_size, NCDVal__idx align)
  88. {
  89. NCDVal__idx mod = o->used % align;
  90. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  91. if (alloc_size > NCDVAL_MAXIDX - align_extra) {
  92. return -1;
  93. }
  94. NCDVal__idx aligned_alloc_size = align_extra + alloc_size;
  95. if (aligned_alloc_size > o->size - o->used) {
  96. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  97. while (aligned_alloc_size > newsize - o->used) {
  98. if (newsize > NCDVAL_MAXIDX / 2) {
  99. return -1;
  100. }
  101. newsize *= 2;
  102. }
  103. char *newbuf;
  104. if (!o->buf) {
  105. newbuf = malloc(newsize);
  106. if (!newbuf) {
  107. return -1;
  108. }
  109. memcpy(newbuf, o->fastbuf, o->used);
  110. } else {
  111. newbuf = realloc(o->buf, newsize);
  112. if (!newbuf) {
  113. return -1;
  114. }
  115. }
  116. o->buf = newbuf;
  117. o->size = newsize;
  118. }
  119. NCDVal__idx idx = o->used + align_extra;
  120. o->used += aligned_alloc_size;
  121. return idx;
  122. }
  123. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  124. {
  125. ASSERT(idx == -1 || mem)
  126. NCDValRef ref = {mem, idx};
  127. return ref;
  128. }
  129. static void NCDVal__AssertMem (NCDValMem *mem)
  130. {
  131. ASSERT(mem)
  132. ASSERT(mem->size >= 0)
  133. ASSERT(mem->used >= 0)
  134. ASSERT(mem->used <= mem->size)
  135. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  136. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  137. }
  138. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  139. {
  140. #ifndef NDEBUG
  141. const char *e_cbuf = e_buf;
  142. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  143. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  144. #endif
  145. }
  146. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  147. {
  148. // placeholders
  149. if (idx < -1) {
  150. return;
  151. }
  152. ASSERT(idx >= 0)
  153. ASSERT(idx + sizeof(int) <= mem->used)
  154. #ifndef NDEBUG
  155. int *type_ptr = NCDValMem__BufAt(mem, idx);
  156. ASSERT(get_depth(*type_ptr) >= 0)
  157. ASSERT(get_depth(*type_ptr) <= NCDVAL_MAX_DEPTH)
  158. switch (get_internal_type(*type_ptr)) {
  159. case STOREDSTRING_TYPE: {
  160. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  161. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  162. ASSERT(str_e->length >= 0)
  163. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  164. } break;
  165. case NCDVAL_LIST: {
  166. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  167. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  168. ASSERT(list_e->maxcount >= 0)
  169. ASSERT(list_e->count >= 0)
  170. ASSERT(list_e->count <= list_e->maxcount)
  171. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  172. } break;
  173. case NCDVAL_MAP: {
  174. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  175. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  176. ASSERT(map_e->maxcount >= 0)
  177. ASSERT(map_e->count >= 0)
  178. ASSERT(map_e->count <= map_e->maxcount)
  179. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  180. } break;
  181. case IDSTRING_TYPE: {
  182. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  183. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  184. ASSERT(ids_e->string_id >= 0)
  185. ASSERT(ids_e->string_index)
  186. } break;
  187. case EXTERNALSTRING_TYPE: {
  188. ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used)
  189. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  190. ASSERT(exs_e->data)
  191. ASSERT(!exs_e->ref.target || exs_e->ref.next >= -1)
  192. ASSERT(!exs_e->ref.target || exs_e->ref.next < mem->used)
  193. } break;
  194. case COMPOSEDSTRING_TYPE: {
  195. ASSERT(idx + sizeof(struct NCDVal__composedstring) <= mem->used)
  196. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx);
  197. ASSERT(cms_e->func_getptr)
  198. ASSERT(!cms_e->ref.target || cms_e->ref.next >= -1)
  199. ASSERT(!cms_e->ref.target || cms_e->ref.next < mem->used)
  200. } break;
  201. default: ASSERT(0);
  202. }
  203. #endif
  204. }
  205. static void NCDVal__AssertVal (NCDValRef val)
  206. {
  207. NCDVal__AssertMem(val.mem);
  208. NCDVal__AssertValOnly(val.mem, val.idx);
  209. }
  210. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  211. {
  212. ASSERT(elemidx >= 0 || elemidx == -1)
  213. NCDValMapElem me = {elemidx};
  214. return me;
  215. }
  216. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  217. {
  218. #ifndef NDEBUG
  219. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  220. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  221. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  222. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  223. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  224. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  225. #endif
  226. }
  227. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  228. {
  229. ASSERT(NCDVal_IsMap(map))
  230. NCDVal__MapAssertElemOnly(map, me.elemidx);
  231. }
  232. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  233. {
  234. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  235. }
  236. static int NCDVal__Depth (NCDValRef val)
  237. {
  238. ASSERT(val.idx != -1)
  239. // handle placeholders
  240. if (val.idx < 0) {
  241. return 0;
  242. }
  243. int *elem_type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  244. int depth = get_depth(*elem_type_ptr);
  245. ASSERT(depth >= 0)
  246. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  247. return depth;
  248. }
  249. static int NCDValMem__NeedRegisterLink (NCDValMem *mem, NCDVal__idx val_idx)
  250. {
  251. NCDVal__AssertValOnly(mem, val_idx);
  252. return !(val_idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(mem, val_idx)) == COMPOSEDSTRING_TYPE;
  253. }
  254. static int NCDValMem__RegisterLink (NCDValMem *mem, NCDVal__idx val_idx, NCDVal__idx link_idx)
  255. {
  256. NCDVal__AssertValOnly(mem, val_idx);
  257. ASSERT(NCDValMem__NeedRegisterLink(mem, val_idx))
  258. NCDVal__idx cms_link_idx = NCDValMem__Alloc(mem, sizeof(struct NCDVal__cms_link), __alignof(struct NCDVal__cms_link));
  259. if (cms_link_idx < 0) {
  260. return 0;
  261. }
  262. struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, cms_link_idx);
  263. cms_link->link_idx = link_idx;
  264. cms_link->next_cms_link = mem->first_cms_link;
  265. mem->first_cms_link = cms_link_idx;
  266. return 1;
  267. }
  268. static void NCDValMem__PopLastRegisteredLink (NCDValMem *mem)
  269. {
  270. ASSERT(mem->first_cms_link != -1)
  271. struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, mem->first_cms_link);
  272. mem->first_cms_link = cms_link->next_cms_link;
  273. }
  274. static NCDValRef NCDVal__CopyComposedStringToStored (NCDValRef val)
  275. {
  276. ASSERT(NCDVal_IsComposedString(val))
  277. struct NCDVal__composedstring cms_e = *(struct NCDVal__composedstring *)NCDValMem__BufAt(val.mem, val.idx);
  278. NCDValRef copy = NCDVal_NewStringUninitialized(val.mem, cms_e.length);
  279. if (NCDVal_IsInvalid(copy)) {
  280. return NCDVal_NewInvalid();
  281. }
  282. char *copy_data = (char *)NCDVal_StringData(copy);
  283. size_t pos = 0;
  284. while (pos < cms_e.length) {
  285. const char *chunk_data;
  286. size_t chunk_len;
  287. cms_e.func_getptr(cms_e.user, cms_e.offset + pos, &chunk_data, &chunk_len);
  288. ASSERT(chunk_data)
  289. ASSERT(chunk_len > 0)
  290. if (chunk_len > cms_e.length - pos) {
  291. chunk_len = cms_e.length - pos;
  292. }
  293. memcpy(copy_data + pos, chunk_data, chunk_len);
  294. pos += chunk_len;
  295. }
  296. return copy;
  297. }
  298. #include "NCDVal_maptree.h"
  299. #include <structure/CAvl_impl.h>
  300. void NCDValMem_Init (NCDValMem *o)
  301. {
  302. o->buf = NULL;
  303. o->size = NCDVAL_FASTBUF_SIZE;
  304. o->used = 0;
  305. o->first_ref = -1;
  306. o->first_cms_link = -1;
  307. }
  308. void NCDValMem_Free (NCDValMem *o)
  309. {
  310. NCDVal__AssertMem(o);
  311. NCDVal__idx refidx = o->first_ref;
  312. while (refidx != -1) {
  313. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  314. ASSERT(ref->target)
  315. NCDRefTarget_Deref(ref->target);
  316. refidx = ref->next;
  317. }
  318. if (o->buf) {
  319. BFree(o->buf);
  320. }
  321. }
  322. int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other)
  323. {
  324. NCDVal__AssertMem(other);
  325. o->size = other->size;
  326. o->used = other->used;
  327. o->first_ref = other->first_ref;
  328. o->first_cms_link = other->first_cms_link;
  329. if (!other->buf) {
  330. o->buf = NULL;
  331. memcpy(o->fastbuf, other->fastbuf, other->used);
  332. } else {
  333. o->buf = BAlloc(other->size);
  334. if (!o->buf) {
  335. goto fail0;
  336. }
  337. memcpy(o->buf, other->buf, other->used);
  338. }
  339. NCDVal__idx refidx = o->first_ref;
  340. while (refidx != -1) {
  341. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  342. ASSERT(ref->target)
  343. if (!NCDRefTarget_Ref(ref->target)) {
  344. goto fail1;
  345. }
  346. refidx = ref->next;
  347. }
  348. return 1;
  349. fail1:;
  350. NCDVal__idx undo_refidx = o->first_ref;
  351. while (undo_refidx != refidx) {
  352. struct NCDVal__ref *ref = NCDValMem__BufAt(o, undo_refidx);
  353. NCDRefTarget_Deref(ref->target);
  354. undo_refidx = ref->next;
  355. }
  356. if (o->buf) {
  357. BFree(o->buf);
  358. }
  359. fail0:
  360. return 0;
  361. }
  362. int NCDValMem_ConvertNonContinuousStrings (NCDValMem *o, NCDValRef *root_val)
  363. {
  364. NCDVal__AssertMem(o);
  365. ASSERT(root_val)
  366. ASSERT(root_val->mem == o)
  367. NCDVal__AssertValOnly(o, root_val->idx);
  368. while (o->first_cms_link != -1) {
  369. struct NCDVal__cms_link cms_link = *(struct NCDVal__cms_link *)NCDValMem__BufAt(o, o->first_cms_link);
  370. NCDVal__idx val_idx = *(NCDVal__idx *)NCDValMem__BufAt(o, cms_link.link_idx);
  371. NCDValRef val = NCDVal__Ref(o, val_idx);
  372. ASSERT(NCDVal_IsComposedString(val))
  373. NCDValRef copy = NCDVal__CopyComposedStringToStored(val);
  374. if (NCDVal_IsInvalid(copy)) {
  375. return 0;
  376. }
  377. *(int *)NCDValMem__BufAt(o, cms_link.link_idx) = copy.idx;
  378. o->first_cms_link = cms_link.next_cms_link;
  379. }
  380. if (NCDVal_IsComposedString(*root_val)) {
  381. NCDValRef copy = NCDVal__CopyComposedStringToStored(*root_val);
  382. if (NCDVal_IsInvalid(copy)) {
  383. return 0;
  384. }
  385. *root_val = copy;
  386. }
  387. return 1;
  388. }
  389. void NCDVal_Assert (NCDValRef val)
  390. {
  391. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  392. }
  393. int NCDVal_IsInvalid (NCDValRef val)
  394. {
  395. NCDVal_Assert(val);
  396. return (val.idx == -1);
  397. }
  398. int NCDVal_IsPlaceholder (NCDValRef val)
  399. {
  400. NCDVal_Assert(val);
  401. return (val.idx < -1);
  402. }
  403. int NCDVal_Type (NCDValRef val)
  404. {
  405. NCDVal__AssertVal(val);
  406. if (val.idx < -1) {
  407. return NCDVAL_PLACEHOLDER;
  408. }
  409. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  410. return get_external_type(*type_ptr);
  411. }
  412. NCDValRef NCDVal_NewInvalid (void)
  413. {
  414. NCDValRef ref = {NULL, -1};
  415. return ref;
  416. }
  417. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  418. {
  419. NCDVal__AssertMem(mem);
  420. ASSERT(plid >= 0)
  421. ASSERT(NCDVAL_MINIDX + plid < -1)
  422. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  423. return ref;
  424. }
  425. int NCDVal_PlaceholderId (NCDValRef val)
  426. {
  427. ASSERT(NCDVal_IsPlaceholder(val))
  428. return (val.idx - NCDVAL_MINIDX);
  429. }
  430. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  431. {
  432. NCDVal__AssertMem(mem);
  433. NCDVal__AssertVal(val);
  434. if (val.idx < -1) {
  435. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  436. }
  437. void *ptr = NCDValMem__BufAt(val.mem, val.idx);
  438. switch (get_internal_type(*(int *)ptr)) {
  439. case STOREDSTRING_TYPE: {
  440. struct NCDVal__string *str_e = ptr;
  441. NCDVal__idx size = sizeof(struct NCDVal__string) + str_e->length + 1;
  442. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  443. if (idx < 0) {
  444. goto fail;
  445. }
  446. str_e = NCDValMem__BufAt(val.mem, val.idx);
  447. struct NCDVal__string *new_str_e = NCDValMem__BufAt(mem, idx);
  448. memcpy(new_str_e, str_e, size);
  449. return NCDVal__Ref(mem, idx);
  450. } break;
  451. case NCDVAL_LIST: {
  452. struct NCDVal__list *list_e = ptr;
  453. NCDVal__idx size = sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx);
  454. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  455. if (idx < 0) {
  456. goto fail;
  457. }
  458. list_e = NCDValMem__BufAt(val.mem, val.idx);
  459. struct NCDVal__list *new_list_e = NCDValMem__BufAt(mem, idx);
  460. *new_list_e = *list_e;
  461. NCDVal__idx count = list_e->count;
  462. for (NCDVal__idx i = 0; i < count; i++) {
  463. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal__Ref(val.mem, list_e->elem_indices[i]));
  464. if (NCDVal_IsInvalid(elem_copy)) {
  465. goto fail;
  466. }
  467. if (NCDValMem__NeedRegisterLink(mem, elem_copy.idx)) {
  468. if (!NCDValMem__RegisterLink(mem, elem_copy.idx, idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx))) {
  469. goto fail;
  470. }
  471. }
  472. list_e = NCDValMem__BufAt(val.mem, val.idx);
  473. new_list_e = NCDValMem__BufAt(mem, idx);
  474. new_list_e->elem_indices[i] = elem_copy.idx;
  475. }
  476. return NCDVal__Ref(mem, idx);
  477. } break;
  478. case NCDVAL_MAP: {
  479. size_t count = NCDVal_MapCount(val);
  480. NCDValRef copy = NCDVal_NewMap(mem, count);
  481. if (NCDVal_IsInvalid(copy)) {
  482. goto fail;
  483. }
  484. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  485. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  486. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  487. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  488. goto fail;
  489. }
  490. int inserted;
  491. if (!NCDVal_MapInsert(copy, key_copy, val_copy, &inserted)) {
  492. goto fail;
  493. }
  494. ASSERT_EXECUTE(inserted)
  495. }
  496. return copy;
  497. } break;
  498. case IDSTRING_TYPE: {
  499. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  500. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  501. if (idx < 0) {
  502. goto fail;
  503. }
  504. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(val.mem, val.idx);
  505. struct NCDVal__idstring *new_ids_e = NCDValMem__BufAt(mem, idx);
  506. *new_ids_e = *ids_e;
  507. return NCDVal__Ref(mem, idx);
  508. } break;
  509. case EXTERNALSTRING_TYPE: {
  510. struct NCDVal__externalstring *exs_e = ptr;
  511. return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target);
  512. } break;
  513. case COMPOSEDSTRING_TYPE: {
  514. struct NCDVal__composedstring *cms_e = ptr;
  515. NCDValStringResource resource;
  516. resource.func_getptr = cms_e->func_getptr;
  517. resource.user = cms_e->user;
  518. resource.ref_target = cms_e->ref.target;
  519. return NCDVal_NewComposedString(mem, resource, cms_e->offset, cms_e->length);
  520. } break;
  521. default: ASSERT(0);
  522. }
  523. ASSERT(0);
  524. fail:
  525. return NCDVal_NewInvalid();
  526. }
  527. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  528. {
  529. NCDVal__AssertVal(val1);
  530. NCDVal__AssertVal(val2);
  531. int type1 = NCDVal_Type(val1);
  532. int type2 = NCDVal_Type(val2);
  533. if (type1 != type2) {
  534. return (type1 > type2) - (type1 < type2);
  535. }
  536. switch (type1) {
  537. case NCDVAL_STRING: {
  538. size_t len1 = NCDVal_StringLength(val1);
  539. size_t len2 = NCDVal_StringLength(val2);
  540. size_t min_len = len1 < len2 ? len1 : len2;
  541. int cmp = NCDVal_StringMemCmp(val1, val2, 0, 0, min_len);
  542. if (cmp) {
  543. return (cmp > 0) - (cmp < 0);
  544. }
  545. return (len1 > len2) - (len1 < len2);
  546. } break;
  547. case NCDVAL_LIST: {
  548. size_t count1 = NCDVal_ListCount(val1);
  549. size_t count2 = NCDVal_ListCount(val2);
  550. size_t min_count = count1 < count2 ? count1 : count2;
  551. for (size_t i = 0; i < min_count; i++) {
  552. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  553. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  554. int cmp = NCDVal_Compare(ev1, ev2);
  555. if (cmp) {
  556. return cmp;
  557. }
  558. }
  559. return (count1 > count2) - (count1 < count2);
  560. } break;
  561. case NCDVAL_MAP: {
  562. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  563. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  564. while (1) {
  565. int inv1 = NCDVal_MapElemInvalid(e1);
  566. int inv2 = NCDVal_MapElemInvalid(e2);
  567. if (inv1 || inv2) {
  568. return inv2 - inv1;
  569. }
  570. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  571. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  572. int cmp = NCDVal_Compare(key1, key2);
  573. if (cmp) {
  574. return cmp;
  575. }
  576. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  577. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  578. cmp = NCDVal_Compare(value1, value2);
  579. if (cmp) {
  580. return cmp;
  581. }
  582. e1 = NCDVal_MapOrderedNext(val1, e1);
  583. e2 = NCDVal_MapOrderedNext(val2, e2);
  584. }
  585. } break;
  586. case NCDVAL_PLACEHOLDER: {
  587. int plid1 = NCDVal_PlaceholderId(val1);
  588. int plid2 = NCDVal_PlaceholderId(val2);
  589. return (plid1 > plid2) - (plid1 < plid2);
  590. } break;
  591. default:
  592. ASSERT(0);
  593. return 0;
  594. }
  595. }
  596. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  597. {
  598. NCDVal_Assert(val);
  599. NCDValSafeRef sval = {val.idx};
  600. return sval;
  601. }
  602. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  603. {
  604. NCDVal__AssertMem(mem);
  605. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  606. NCDValRef val = {mem, sval.idx};
  607. return val;
  608. }
  609. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  610. {
  611. NCDVal__AssertMem(mem);
  612. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  613. NCDValRef val2 = {mem, val.idx};
  614. return val2;
  615. }
  616. int NCDVal_IsString (NCDValRef val)
  617. {
  618. NCDVal__AssertVal(val);
  619. return NCDVal_Type(val) == NCDVAL_STRING;
  620. }
  621. int NCDVal_IsContinuousString (NCDValRef val)
  622. {
  623. NCDVal__AssertVal(val);
  624. if (val.idx < -1) {
  625. return 0;
  626. }
  627. switch (get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx))) {
  628. case STOREDSTRING_TYPE:
  629. case IDSTRING_TYPE:
  630. case EXTERNALSTRING_TYPE:
  631. return 1;
  632. default:
  633. return 0;
  634. }
  635. }
  636. int NCDVal_IsStoredString (NCDValRef val)
  637. {
  638. NCDVal__AssertVal(val);
  639. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == STOREDSTRING_TYPE;
  640. }
  641. int NCDVal_IsIdString (NCDValRef val)
  642. {
  643. NCDVal__AssertVal(val);
  644. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == IDSTRING_TYPE;
  645. }
  646. int NCDVal_IsExternalString (NCDValRef val)
  647. {
  648. NCDVal__AssertVal(val);
  649. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == EXTERNALSTRING_TYPE;
  650. }
  651. int NCDVal_IsComposedString (NCDValRef val)
  652. {
  653. NCDVal__AssertVal(val);
  654. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == COMPOSEDSTRING_TYPE;
  655. }
  656. int NCDVal_IsStringNoNulls (NCDValRef val)
  657. {
  658. NCDVal__AssertVal(val);
  659. return NCDVal_Type(val) == NCDVAL_STRING && !NCDVal_StringHasNulls(val);
  660. }
  661. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  662. {
  663. NCDVal__AssertMem(mem);
  664. ASSERT(data)
  665. NCDVal_AssertExternal(mem, data, strlen(data));
  666. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  667. }
  668. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  669. {
  670. NCDVal__AssertMem(mem);
  671. ASSERT(len == 0 || data)
  672. NCDVal_AssertExternal(mem, data, len);
  673. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  674. goto fail;
  675. }
  676. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  677. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  678. if (idx < 0) {
  679. goto fail;
  680. }
  681. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  682. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  683. str_e->length = len;
  684. if (len > 0) {
  685. memcpy(str_e->data, data, len);
  686. }
  687. str_e->data[len] = '\0';
  688. return NCDVal__Ref(mem, idx);
  689. fail:
  690. return NCDVal_NewInvalid();
  691. }
  692. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  693. {
  694. NCDVal__AssertMem(mem);
  695. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  696. goto fail;
  697. }
  698. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  699. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  700. if (idx < 0) {
  701. goto fail;
  702. }
  703. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  704. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  705. str_e->length = len;
  706. str_e->data[len] = '\0';
  707. return NCDVal__Ref(mem, idx);
  708. fail:
  709. return NCDVal_NewInvalid();
  710. }
  711. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index)
  712. {
  713. NCDVal__AssertMem(mem);
  714. ASSERT(string_id >= 0)
  715. ASSERT(string_index)
  716. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  717. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  718. if (idx < 0) {
  719. goto fail;
  720. }
  721. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  722. ids_e->type = make_type(IDSTRING_TYPE, 0);
  723. ids_e->string_id = string_id;
  724. ids_e->string_index = string_index;
  725. return NCDVal__Ref(mem, idx);
  726. fail:
  727. return NCDVal_NewInvalid();
  728. }
  729. NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len,
  730. NCDRefTarget *ref_target)
  731. {
  732. NCDVal__AssertMem(mem);
  733. ASSERT(data)
  734. NCDVal_AssertExternal(mem, data, len);
  735. NCDVal__idx size = sizeof(struct NCDVal__externalstring);
  736. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__externalstring));
  737. if (idx < 0) {
  738. goto fail;
  739. }
  740. if (ref_target) {
  741. if (!NCDRefTarget_Ref(ref_target)) {
  742. goto fail;
  743. }
  744. }
  745. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  746. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  747. exs_e->data = data;
  748. exs_e->length = len;
  749. exs_e->ref.target = ref_target;
  750. if (ref_target) {
  751. exs_e->ref.next = mem->first_ref;
  752. mem->first_ref = idx + offsetof(struct NCDVal__externalstring, ref);
  753. }
  754. return NCDVal__Ref(mem, idx);
  755. fail:
  756. return NCDVal_NewInvalid();
  757. }
  758. NCDValRef NCDVal_NewComposedString (NCDValMem *mem, NCDValStringResource resource, size_t offset, size_t length)
  759. {
  760. NCDVal__AssertMem(mem);
  761. ASSERT(resource.func_getptr)
  762. NCDVal__idx size = sizeof(struct NCDVal__composedstring);
  763. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__composedstring));
  764. if (idx < 0) {
  765. goto fail;
  766. }
  767. if (resource.ref_target) {
  768. if (!NCDRefTarget_Ref(resource.ref_target)) {
  769. goto fail;
  770. }
  771. }
  772. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx);
  773. cms_e->type = make_type(COMPOSEDSTRING_TYPE, 0);
  774. cms_e->offset = offset;
  775. cms_e->length = length;
  776. cms_e->func_getptr = resource.func_getptr;
  777. cms_e->user = resource.user;
  778. cms_e->ref.target = resource.ref_target;
  779. if (resource.ref_target) {
  780. cms_e->ref.next = mem->first_ref;
  781. mem->first_ref = idx + offsetof(struct NCDVal__composedstring, ref);
  782. }
  783. return NCDVal__Ref(mem, idx);
  784. fail:
  785. return NCDVal_NewInvalid();
  786. }
  787. const char * NCDVal_StringData (NCDValRef contstring)
  788. {
  789. ASSERT(NCDVal_IsContinuousString(contstring))
  790. void *ptr = NCDValMem__BufAt(contstring.mem, contstring.idx);
  791. switch (get_internal_type(*(int *)ptr)) {
  792. case STOREDSTRING_TYPE: {
  793. struct NCDVal__string *str_e = ptr;
  794. return str_e->data;
  795. } break;
  796. case IDSTRING_TYPE: {
  797. struct NCDVal__idstring *ids_e = ptr;
  798. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  799. return value;
  800. } break;
  801. case EXTERNALSTRING_TYPE: {
  802. struct NCDVal__externalstring *exs_e = ptr;
  803. return exs_e->data;
  804. } break;
  805. default:
  806. ASSERT(0);
  807. return NULL;
  808. }
  809. }
  810. size_t NCDVal_StringLength (NCDValRef string)
  811. {
  812. ASSERT(NCDVal_IsString(string))
  813. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  814. switch (get_internal_type(*(int *)ptr)) {
  815. case STOREDSTRING_TYPE: {
  816. struct NCDVal__string *str_e = ptr;
  817. return str_e->length;
  818. } break;
  819. case IDSTRING_TYPE: {
  820. struct NCDVal__idstring *ids_e = ptr;
  821. return NCDStringIndex_Length(ids_e->string_index, ids_e->string_id);
  822. } break;
  823. case EXTERNALSTRING_TYPE: {
  824. struct NCDVal__externalstring *exs_e = ptr;
  825. return exs_e->length;
  826. } break;
  827. case COMPOSEDSTRING_TYPE: {
  828. struct NCDVal__composedstring *cms_e = ptr;
  829. return cms_e->length;
  830. } break;
  831. default:
  832. ASSERT(0);
  833. return 0;
  834. }
  835. }
  836. void NCDValStringResource_GetPtr (NCDValStringResource resource, size_t offset, size_t max_length, const char **out_data, size_t *out_length)
  837. {
  838. ASSERT(max_length > 0)
  839. ASSERT(out_data)
  840. ASSERT(out_length)
  841. resource.func_getptr(resource.user, offset, out_data, out_length);
  842. if (*out_length > max_length) {
  843. *out_length = max_length;
  844. }
  845. }
  846. void NCDVal_StringGetPtr (NCDValRef string, size_t offset, size_t max_length, const char **out_data, size_t *out_length)
  847. {
  848. ASSERT(NCDVal_IsString(string))
  849. ASSERT(offset < NCDVal_StringLength(string))
  850. ASSERT(max_length > 0)
  851. ASSERT(out_data)
  852. ASSERT(out_length)
  853. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  854. switch (get_internal_type(*(int *)ptr)) {
  855. case STOREDSTRING_TYPE: {
  856. struct NCDVal__string *str_e = ptr;
  857. *out_data = str_e->data + offset;
  858. *out_length = str_e->length - offset;
  859. } break;
  860. case IDSTRING_TYPE: {
  861. struct NCDVal__idstring *ids_e = ptr;
  862. *out_data = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id) + offset;
  863. *out_length = NCDStringIndex_Length(ids_e->string_index, ids_e->string_id) - offset;
  864. } break;
  865. case EXTERNALSTRING_TYPE: {
  866. struct NCDVal__externalstring *exs_e = ptr;
  867. *out_data = exs_e->data + offset;
  868. *out_length = exs_e->length - offset;
  869. } break;
  870. case COMPOSEDSTRING_TYPE: {
  871. struct NCDVal__composedstring *cms_e = ptr;
  872. cms_e->func_getptr(cms_e->user, cms_e->offset + offset, out_data, out_length);
  873. ASSERT(*out_data)
  874. ASSERT(*out_length > 0)
  875. } break;
  876. default:
  877. ASSERT(0);
  878. *out_data = NULL;
  879. *out_length = 0;
  880. }
  881. if (*out_length > max_length) {
  882. *out_length = max_length;
  883. }
  884. }
  885. int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out)
  886. {
  887. ASSERT(NCDVal_IsString(string))
  888. ASSERT(out)
  889. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  890. switch (get_internal_type(*(int *)ptr)) {
  891. case STOREDSTRING_TYPE: {
  892. struct NCDVal__string *str_e = ptr;
  893. out->data = str_e->data;
  894. out->is_allocated = 0;
  895. return 1;
  896. } break;
  897. case IDSTRING_TYPE: {
  898. struct NCDVal__idstring *ids_e = ptr;
  899. out->data = (char *)NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  900. out->is_allocated = 0;
  901. return 1;
  902. } break;
  903. case EXTERNALSTRING_TYPE: {
  904. struct NCDVal__externalstring *exs_e = ptr;
  905. char *copy = b_strdup_bin(exs_e->data, exs_e->length);
  906. if (!copy) {
  907. return 0;
  908. }
  909. out->data = copy;
  910. out->is_allocated = 1;
  911. return 1;
  912. } break;
  913. case COMPOSEDSTRING_TYPE: {
  914. struct NCDVal__composedstring *cms_e = ptr;
  915. size_t length = cms_e->length;
  916. if (length == SIZE_MAX) {
  917. return 0;
  918. }
  919. char *copy = BAlloc(length + 1);
  920. if (!copy) {
  921. return 0;
  922. }
  923. NCDVal_StringCopyOut(string, 0, length, copy);
  924. copy[length] = '\0';
  925. out->data = copy;
  926. out->is_allocated = 1;
  927. return 1;
  928. } break;
  929. default:
  930. ASSERT(0);
  931. return 0;
  932. }
  933. }
  934. NCDValNullTermString NCDValNullTermString_NewDummy (void)
  935. {
  936. NCDValNullTermString nts;
  937. nts.data = NULL;
  938. nts.is_allocated = 0;
  939. return nts;
  940. }
  941. void NCDValNullTermString_Free (NCDValNullTermString *o)
  942. {
  943. if (o->is_allocated) {
  944. BFree(o->data);
  945. }
  946. }
  947. void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id,
  948. NCDStringIndex **out_string_index)
  949. {
  950. ASSERT(NCDVal_IsIdString(idstring))
  951. ASSERT(out_string_id)
  952. ASSERT(out_string_index)
  953. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  954. *out_string_id = ids_e->string_id;
  955. *out_string_index = ids_e->string_index;
  956. }
  957. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  958. {
  959. ASSERT(NCDVal_IsIdString(idstring))
  960. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  961. return ids_e->string_id;
  962. }
  963. NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring)
  964. {
  965. ASSERT(NCDVal_IsIdString(idstring))
  966. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  967. return ids_e->string_index;
  968. }
  969. NCDRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring)
  970. {
  971. ASSERT(NCDVal_IsExternalString(externalstring))
  972. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(externalstring.mem, externalstring.idx);
  973. return exs_e->ref.target;
  974. }
  975. NCDValStringResource NCDVal_ComposedStringResource (NCDValRef composedstring)
  976. {
  977. ASSERT(NCDVal_IsComposedString(composedstring))
  978. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx);
  979. NCDValStringResource res;
  980. res.func_getptr = cms_e->func_getptr;
  981. res.user = cms_e->user;
  982. res.ref_target = cms_e->ref.target;
  983. return res;
  984. }
  985. size_t NCDVal_ComposedStringOffset (NCDValRef composedstring)
  986. {
  987. ASSERT(NCDVal_IsComposedString(composedstring))
  988. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx);
  989. return cms_e->offset;
  990. }
  991. int NCDVal_StringHasNulls (NCDValRef string)
  992. {
  993. ASSERT(NCDVal_IsString(string))
  994. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  995. switch (get_internal_type(*(int *)ptr)) {
  996. case IDSTRING_TYPE: {
  997. struct NCDVal__idstring *ids_e = ptr;
  998. return NCDStringIndex_HasNulls(ids_e->string_index, ids_e->string_id);
  999. } break;
  1000. case STOREDSTRING_TYPE:
  1001. case EXTERNALSTRING_TYPE: {
  1002. const char *data = NCDVal_StringData(string);
  1003. size_t length = NCDVal_StringLength(string);
  1004. return !!memchr(data, '\0', length);
  1005. } break;
  1006. case COMPOSEDSTRING_TYPE: {
  1007. size_t pos = 0;
  1008. size_t length = NCDVal_StringLength(string);
  1009. while (pos < length) {
  1010. const char *chunk_data;
  1011. size_t chunk_len;
  1012. NCDVal_StringGetPtr(string, pos, length - pos, &chunk_data, &chunk_len);
  1013. if (memchr(chunk_data, '\0', chunk_len)) {
  1014. return 1;
  1015. }
  1016. pos += chunk_len;
  1017. }
  1018. return 0;
  1019. } break;
  1020. default:
  1021. ASSERT(0);
  1022. return 0;
  1023. }
  1024. }
  1025. int NCDVal_StringEquals (NCDValRef string, const char *data)
  1026. {
  1027. ASSERT(NCDVal_IsString(string))
  1028. ASSERT(data)
  1029. size_t data_len = strlen(data);
  1030. return NCDVal_StringLength(string) == data_len && NCDVal_StringRegionEquals(string, 0, data_len, data);
  1031. }
  1032. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id,
  1033. NCDStringIndex *string_index)
  1034. {
  1035. ASSERT(NCDVal_IsString(string))
  1036. ASSERT(string_id >= 0)
  1037. ASSERT(string_index)
  1038. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  1039. switch (get_internal_type(*(int *)ptr)) {
  1040. case STOREDSTRING_TYPE: {
  1041. struct NCDVal__string *str_e = ptr;
  1042. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1043. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1044. return (string_length == str_e->length) && !memcmp(string_data, str_e->data, string_length);
  1045. } break;
  1046. case IDSTRING_TYPE: {
  1047. struct NCDVal__idstring *ids_e = ptr;
  1048. ASSERT(ids_e->string_index == string_index)
  1049. return ids_e->string_id == string_id;
  1050. } break;
  1051. case EXTERNALSTRING_TYPE: {
  1052. struct NCDVal__externalstring *exs_e = ptr;
  1053. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1054. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1055. return (string_length == exs_e->length) && !memcmp(string_data, exs_e->data, string_length);
  1056. } break;
  1057. case COMPOSEDSTRING_TYPE: {
  1058. struct NCDVal__composedstring *cms_e = ptr;
  1059. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1060. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1061. return (string_length == cms_e->length) && NCDVal_StringRegionEquals(string, 0, string_length, string_data);
  1062. } break;
  1063. default:
  1064. ASSERT(0);
  1065. return 0;
  1066. }
  1067. }
  1068. int NCDVal_StringMemCmp (NCDValRef string1, NCDValRef string2, size_t start1, size_t start2, size_t length)
  1069. {
  1070. ASSERT(NCDVal_IsString(string1))
  1071. ASSERT(NCDVal_IsString(string2))
  1072. ASSERT(start1 <= NCDVal_StringLength(string1))
  1073. ASSERT(start2 <= NCDVal_StringLength(string2))
  1074. ASSERT(length <= NCDVal_StringLength(string1) - start1)
  1075. ASSERT(length <= NCDVal_StringLength(string2) - start2)
  1076. if (NCDVal_IsContinuousString(string1) && NCDVal_IsContinuousString(string2)) {
  1077. return memcmp(NCDVal_StringData(string1) + start1, NCDVal_StringData(string2) + start2, length);
  1078. }
  1079. size_t pos1 = 0;
  1080. while (pos1 < length) {
  1081. const char *chunk_data1;
  1082. size_t chunk_len1;
  1083. NCDVal_StringGetPtr(string1, start1 + pos1, length - pos1, &chunk_data1, &chunk_len1);
  1084. size_t pos2 = 0;
  1085. while (pos2 < chunk_len1) {
  1086. const char *chunk_data2;
  1087. size_t chunk_len2;
  1088. NCDVal_StringGetPtr(string2, start2 + pos1 + pos2, chunk_len1 - pos2, &chunk_data2, &chunk_len2);
  1089. int cmp = memcmp(chunk_data1 + pos2, chunk_data2, chunk_len2);
  1090. if (cmp) {
  1091. return cmp;
  1092. }
  1093. pos2 += chunk_len2;
  1094. }
  1095. pos1 += chunk_len1;
  1096. }
  1097. return 0;
  1098. }
  1099. void NCDVal_StringCopyOut (NCDValRef string, size_t start, size_t length, char *dst)
  1100. {
  1101. ASSERT(NCDVal_IsString(string))
  1102. ASSERT(start <= NCDVal_StringLength(string))
  1103. ASSERT(length <= NCDVal_StringLength(string) - start)
  1104. if (NCDVal_IsContinuousString(string)) {
  1105. memcpy(dst, NCDVal_StringData(string) + start, length);
  1106. return;
  1107. }
  1108. size_t pos = 0;
  1109. while (pos < length) {
  1110. const char *chunk_data;
  1111. size_t chunk_len;
  1112. NCDVal_StringGetPtr(string, start + pos, length - pos, &chunk_data, &chunk_len);
  1113. memcpy(dst + pos, chunk_data, chunk_len);
  1114. pos += chunk_len;
  1115. }
  1116. }
  1117. int NCDVal_StringRegionEquals (NCDValRef string, size_t start, size_t length, const char *data)
  1118. {
  1119. ASSERT(NCDVal_IsString(string))
  1120. ASSERT(start <= NCDVal_StringLength(string))
  1121. ASSERT(length <= NCDVal_StringLength(string) - start)
  1122. if (NCDVal_IsContinuousString(string)) {
  1123. return !memcmp(NCDVal_StringData(string) + start, data, length);
  1124. }
  1125. size_t pos = 0;
  1126. while (pos < length) {
  1127. const char *chunk_data;
  1128. size_t chunk_len;
  1129. NCDVal_StringGetPtr(string, start + pos, length - pos, &chunk_data, &chunk_len);
  1130. if (memcmp(chunk_data, data + pos, chunk_len)) {
  1131. return 0;
  1132. }
  1133. pos += chunk_len;
  1134. }
  1135. return 1;
  1136. }
  1137. int NCDVal_IsList (NCDValRef val)
  1138. {
  1139. NCDVal__AssertVal(val);
  1140. return NCDVal_Type(val) == NCDVAL_LIST;
  1141. }
  1142. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  1143. {
  1144. NCDVal__AssertMem(mem);
  1145. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__list)) / sizeof(NCDVal__idx)) {
  1146. goto fail;
  1147. }
  1148. NCDVal__idx size = sizeof(struct NCDVal__list) + maxcount * sizeof(NCDVal__idx);
  1149. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  1150. if (idx < 0) {
  1151. goto fail;
  1152. }
  1153. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  1154. list_e->type = make_type(NCDVAL_LIST, 0);
  1155. list_e->maxcount = maxcount;
  1156. list_e->count = 0;
  1157. return NCDVal__Ref(mem, idx);
  1158. fail:
  1159. return NCDVal_NewInvalid();
  1160. }
  1161. int NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  1162. {
  1163. ASSERT(NCDVal_IsList(list))
  1164. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  1165. ASSERT(elem.mem == list.mem)
  1166. NCDVal__AssertValOnly(list.mem, elem.idx);
  1167. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1168. int new_type = list_e->type;
  1169. if (!bump_depth(&new_type, NCDVal__Depth(elem))) {
  1170. return 0;
  1171. }
  1172. if (NCDValMem__NeedRegisterLink(list.mem, elem.idx)) {
  1173. if (!NCDValMem__RegisterLink(list.mem, elem.idx, list.idx + offsetof(struct NCDVal__list, elem_indices) + list_e->count * sizeof(NCDVal__idx))) {
  1174. return 0;
  1175. }
  1176. list_e = NCDValMem__BufAt(list.mem, list.idx);
  1177. }
  1178. list_e->type = new_type;
  1179. list_e->elem_indices[list_e->count++] = elem.idx;
  1180. return 1;
  1181. }
  1182. size_t NCDVal_ListCount (NCDValRef list)
  1183. {
  1184. ASSERT(NCDVal_IsList(list))
  1185. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1186. return list_e->count;
  1187. }
  1188. size_t NCDVal_ListMaxCount (NCDValRef list)
  1189. {
  1190. ASSERT(NCDVal_IsList(list))
  1191. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1192. return list_e->maxcount;
  1193. }
  1194. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  1195. {
  1196. ASSERT(NCDVal_IsList(list))
  1197. ASSERT(pos < NCDVal_ListCount(list))
  1198. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1199. ASSERT(pos < list_e->count)
  1200. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  1201. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  1202. }
  1203. int NCDVal_ListRead (NCDValRef list, int num, ...)
  1204. {
  1205. ASSERT(NCDVal_IsList(list))
  1206. ASSERT(num >= 0)
  1207. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1208. if (num != list_e->count) {
  1209. return 0;
  1210. }
  1211. va_list ap;
  1212. va_start(ap, num);
  1213. for (int i = 0; i < num; i++) {
  1214. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1215. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1216. }
  1217. va_end(ap);
  1218. return 1;
  1219. }
  1220. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  1221. {
  1222. ASSERT(NCDVal_IsList(list))
  1223. ASSERT(num >= 0)
  1224. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1225. if (num > list_e->count) {
  1226. return 0;
  1227. }
  1228. va_list ap;
  1229. va_start(ap, num);
  1230. for (int i = 0; i < num; i++) {
  1231. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1232. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1233. }
  1234. va_end(ap);
  1235. return 1;
  1236. }
  1237. int NCDVal_IsMap (NCDValRef val)
  1238. {
  1239. NCDVal__AssertVal(val);
  1240. return NCDVal_Type(val) == NCDVAL_MAP;
  1241. }
  1242. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  1243. {
  1244. NCDVal__AssertMem(mem);
  1245. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__map)) / sizeof(struct NCDVal__mapelem)) {
  1246. goto fail;
  1247. }
  1248. NCDVal__idx size = sizeof(struct NCDVal__map) + maxcount * sizeof(struct NCDVal__mapelem);
  1249. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  1250. if (idx < 0) {
  1251. goto fail;
  1252. }
  1253. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  1254. map_e->type = make_type(NCDVAL_MAP, 0);
  1255. map_e->maxcount = maxcount;
  1256. map_e->count = 0;
  1257. NCDVal__MapTree_Init(&map_e->tree);
  1258. return NCDVal__Ref(mem, idx);
  1259. fail:
  1260. return NCDVal_NewInvalid();
  1261. }
  1262. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val, int *out_inserted)
  1263. {
  1264. ASSERT(NCDVal_IsMap(map))
  1265. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  1266. ASSERT(key.mem == map.mem)
  1267. ASSERT(val.mem == map.mem)
  1268. NCDVal__AssertValOnly(map.mem, key.idx);
  1269. NCDVal__AssertValOnly(map.mem, val.idx);
  1270. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1271. int new_type = map_e->type;
  1272. if (!bump_depth(&new_type, NCDVal__Depth(key)) || !bump_depth(&new_type, NCDVal__Depth(val))) {
  1273. goto fail0;
  1274. }
  1275. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  1276. if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) {
  1277. if (!NCDValMem__RegisterLink(map.mem, key.idx, elemidx + offsetof(struct NCDVal__mapelem, key_idx))) {
  1278. goto fail0;
  1279. }
  1280. map_e = NCDValMem__BufAt(map.mem, map.idx);
  1281. }
  1282. if (NCDValMem__NeedRegisterLink(map.mem, val.idx)) {
  1283. if (!NCDValMem__RegisterLink(map.mem, val.idx, elemidx + offsetof(struct NCDVal__mapelem, val_idx))) {
  1284. goto fail1;
  1285. }
  1286. map_e = NCDValMem__BufAt(map.mem, map.idx);
  1287. }
  1288. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  1289. ASSERT(me_e == &map_e->elems[map_e->count])
  1290. me_e->key_idx = key.idx;
  1291. me_e->val_idx = val.idx;
  1292. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  1293. if (!res) {
  1294. if (out_inserted) {
  1295. *out_inserted = 0;
  1296. }
  1297. return 1;
  1298. }
  1299. map_e->type = new_type;
  1300. map_e->count++;
  1301. if (out_inserted) {
  1302. *out_inserted = 1;
  1303. }
  1304. return 1;
  1305. fail1:
  1306. if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) {
  1307. NCDValMem__PopLastRegisteredLink(map.mem);
  1308. }
  1309. fail0:
  1310. return 0;
  1311. }
  1312. size_t NCDVal_MapCount (NCDValRef map)
  1313. {
  1314. ASSERT(NCDVal_IsMap(map))
  1315. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1316. return map_e->count;
  1317. }
  1318. size_t NCDVal_MapMaxCount (NCDValRef map)
  1319. {
  1320. ASSERT(NCDVal_IsMap(map))
  1321. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1322. return map_e->maxcount;
  1323. }
  1324. int NCDVal_MapElemInvalid (NCDValMapElem me)
  1325. {
  1326. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  1327. return me.elemidx < 0;
  1328. }
  1329. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  1330. {
  1331. ASSERT(NCDVal_IsMap(map))
  1332. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1333. if (map_e->count == 0) {
  1334. return NCDVal__MapElem(-1);
  1335. }
  1336. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  1337. NCDVal__MapAssertElemOnly(map, elemidx);
  1338. return NCDVal__MapElem(elemidx);
  1339. }
  1340. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  1341. {
  1342. NCDVal__MapAssertElem(map, me);
  1343. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1344. ASSERT(map_e->count > 0)
  1345. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  1346. ASSERT(me.elemidx <= last_elemidx)
  1347. if (me.elemidx == last_elemidx) {
  1348. return NCDVal__MapElem(-1);
  1349. }
  1350. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  1351. NCDVal__MapAssertElemOnly(map, elemidx);
  1352. return NCDVal__MapElem(elemidx);
  1353. }
  1354. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  1355. {
  1356. ASSERT(NCDVal_IsMap(map))
  1357. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1358. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  1359. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1360. return NCDVal__MapElem(ref.link);
  1361. }
  1362. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  1363. {
  1364. NCDVal__MapAssertElem(map, me);
  1365. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1366. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  1367. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1368. return NCDVal__MapElem(ref.link);
  1369. }
  1370. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  1371. {
  1372. NCDVal__MapAssertElem(map, me);
  1373. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1374. return NCDVal__Ref(map.mem, me_e->key_idx);
  1375. }
  1376. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  1377. {
  1378. NCDVal__MapAssertElem(map, me);
  1379. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1380. return NCDVal__Ref(map.mem, me_e->val_idx);
  1381. }
  1382. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  1383. {
  1384. ASSERT(NCDVal_IsMap(map))
  1385. NCDVal__AssertVal(key);
  1386. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1387. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  1388. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1389. return NCDVal__MapElem(ref.link);
  1390. }
  1391. NCDValRef NCDVal_MapGetValue (NCDValRef map, const char *key_str)
  1392. {
  1393. ASSERT(NCDVal_IsMap(map))
  1394. ASSERT(key_str)
  1395. NCDValMem mem;
  1396. mem.buf = NULL;
  1397. mem.size = NCDVAL_FASTBUF_SIZE;
  1398. mem.used = sizeof(struct NCDVal__externalstring);
  1399. mem.first_ref = -1;
  1400. struct NCDVal__externalstring *exs_e = (void *)mem.fastbuf;
  1401. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  1402. exs_e->data = key_str;
  1403. exs_e->length = strlen(key_str);
  1404. exs_e->ref.target = NULL;
  1405. NCDValRef key = NCDVal__Ref(&mem, 0);
  1406. NCDValMapElem elem = NCDVal_MapFindKey(map, key);
  1407. if (NCDVal_MapElemInvalid(elem)) {
  1408. return NCDVal_NewInvalid();
  1409. }
  1410. return NCDVal_MapElemVal(map, elem);
  1411. }
  1412. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  1413. {
  1414. ASSERT(idx >= 0)
  1415. NCDVal__AssertValOnly(mem, idx);
  1416. ASSERT(out_num_instr)
  1417. *out_num_instr = 0;
  1418. void *ptr = NCDValMem__BufAt(mem, idx);
  1419. struct NCDVal__instr instr;
  1420. switch (get_internal_type(*((int *)(ptr)))) {
  1421. case STOREDSTRING_TYPE:
  1422. case IDSTRING_TYPE:
  1423. case EXTERNALSTRING_TYPE:
  1424. case COMPOSEDSTRING_TYPE: {
  1425. } break;
  1426. case NCDVAL_LIST: {
  1427. struct NCDVal__list *list_e = ptr;
  1428. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  1429. int elem_changed = 0;
  1430. if (list_e->elem_indices[i] < -1) {
  1431. if (prog) {
  1432. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1433. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  1434. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1435. prog->instrs[prog->num_instrs++] = instr;
  1436. }
  1437. (*out_num_instr)++;
  1438. elem_changed = 1;
  1439. } else {
  1440. size_t elem_num_instr;
  1441. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  1442. (*out_num_instr) += elem_num_instr;
  1443. if (elem_num_instr > 0) {
  1444. elem_changed = 1;
  1445. }
  1446. }
  1447. if (elem_changed) {
  1448. if (prog) {
  1449. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1450. instr.bumpdepth.parent_idx = idx;
  1451. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1452. prog->instrs[prog->num_instrs++] = instr;
  1453. }
  1454. (*out_num_instr)++;
  1455. }
  1456. }
  1457. } break;
  1458. case NCDVAL_MAP: {
  1459. struct NCDVal__map *map_e = ptr;
  1460. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  1461. int key_changed = 0;
  1462. int val_changed = 0;
  1463. if (map_e->elems[i].key_idx < -1) {
  1464. if (prog) {
  1465. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1466. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  1467. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1468. prog->instrs[prog->num_instrs++] = instr;
  1469. }
  1470. (*out_num_instr)++;
  1471. key_changed = 1;
  1472. } else {
  1473. size_t key_num_instr;
  1474. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  1475. (*out_num_instr) += key_num_instr;
  1476. if (key_num_instr > 0) {
  1477. key_changed = 1;
  1478. }
  1479. }
  1480. if (map_e->elems[i].val_idx < -1) {
  1481. if (prog) {
  1482. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1483. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  1484. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1485. prog->instrs[prog->num_instrs++] = instr;
  1486. }
  1487. (*out_num_instr)++;
  1488. val_changed = 1;
  1489. } else {
  1490. size_t val_num_instr;
  1491. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  1492. (*out_num_instr) += val_num_instr;
  1493. if (val_num_instr > 0) {
  1494. val_changed = 1;
  1495. }
  1496. }
  1497. if (key_changed) {
  1498. if (prog) {
  1499. instr.type = NCDVAL_INSTR_REINSERT;
  1500. instr.reinsert.mapidx = idx;
  1501. instr.reinsert.elempos = i;
  1502. prog->instrs[prog->num_instrs++] = instr;
  1503. }
  1504. (*out_num_instr)++;
  1505. if (prog) {
  1506. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1507. instr.bumpdepth.parent_idx = idx;
  1508. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1509. prog->instrs[prog->num_instrs++] = instr;
  1510. }
  1511. (*out_num_instr)++;
  1512. }
  1513. if (val_changed) {
  1514. if (prog) {
  1515. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1516. instr.bumpdepth.parent_idx = idx;
  1517. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1518. prog->instrs[prog->num_instrs++] = instr;
  1519. }
  1520. (*out_num_instr)++;
  1521. }
  1522. }
  1523. } break;
  1524. default: ASSERT(0);
  1525. }
  1526. }
  1527. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  1528. {
  1529. NCDVal__AssertVal(val);
  1530. ASSERT(!NCDVal_IsPlaceholder(val))
  1531. size_t num_instrs;
  1532. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  1533. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  1534. BLog(BLOG_ERROR, "BAllocArray failed");
  1535. return 0;
  1536. }
  1537. o->num_instrs = 0;
  1538. size_t num_instrs2;
  1539. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  1540. ASSERT(num_instrs2 == num_instrs)
  1541. ASSERT(o->num_instrs == num_instrs)
  1542. return 1;
  1543. }
  1544. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  1545. {
  1546. BFree(o->instrs);
  1547. }
  1548. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  1549. {
  1550. NCDVal__AssertMem(mem);
  1551. ASSERT(replace)
  1552. for (size_t i = 0; i < prog.num_instrs; i++) {
  1553. struct NCDVal__instr instr = prog.instrs[i];
  1554. switch (instr.type) {
  1555. case NCDVAL_INSTR_PLACEHOLDER: {
  1556. #ifndef NDEBUG
  1557. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1558. ASSERT(*check_plptr < -1)
  1559. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  1560. #endif
  1561. NCDValRef repval;
  1562. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  1563. return 0;
  1564. }
  1565. ASSERT(repval.mem == mem)
  1566. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1567. *plptr = repval.idx;
  1568. } break;
  1569. case NCDVAL_INSTR_REINSERT: {
  1570. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  1571. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  1572. ASSERT(map_e->type == NCDVAL_MAP)
  1573. ASSERT(instr.reinsert.elempos >= 0)
  1574. ASSERT(instr.reinsert.elempos < map_e->count)
  1575. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  1576. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  1577. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  1578. BLog(BLOG_ERROR, "duplicate key in map");
  1579. return 0;
  1580. }
  1581. } break;
  1582. case NCDVAL_INSTR_BUMPDEPTH: {
  1583. NCDVal__AssertValOnly(mem, instr.bumpdepth.parent_idx);
  1584. int *parent_type_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.parent_idx);
  1585. NCDVal__idx *child_type_idx_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.child_idx_idx);
  1586. NCDVal__AssertValOnly(mem, *child_type_idx_ptr);
  1587. int *child_type_ptr = NCDValMem__BufAt(mem, *child_type_idx_ptr);
  1588. if (!bump_depth(parent_type_ptr, get_depth(*child_type_ptr))) {
  1589. BLog(BLOG_ERROR, "depth limit exceeded");
  1590. return 0;
  1591. }
  1592. } break;
  1593. default: ASSERT(0);
  1594. }
  1595. }
  1596. return 1;
  1597. }