NCDVal.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/balloc.h>
  35. #include <misc/strdup.h>
  36. #include <misc/offset.h>
  37. #include <base/BLog.h>
  38. #include "NCDVal.h"
  39. #include <generated/blog_channel_NCDVal.h>
  40. #define TYPE_MASK_EXTERNAL_TYPE ((1 << 3) - 1)
  41. #define TYPE_MASK_INTERNAL_TYPE ((1 << 5) - 1)
  42. #define TYPE_SHIFT_DEPTH 5
  43. #define STOREDSTRING_TYPE (NCDVAL_STRING | (0 << 3))
  44. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  45. #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3))
  46. #define COMPOSEDSTRING_TYPE (NCDVAL_STRING | (3 << 3))
  47. static int make_type (int internal_type, int depth)
  48. {
  49. ASSERT(internal_type == NCDVAL_LIST ||
  50. internal_type == NCDVAL_MAP ||
  51. internal_type == STOREDSTRING_TYPE ||
  52. internal_type == IDSTRING_TYPE ||
  53. internal_type == EXTERNALSTRING_TYPE ||
  54. internal_type == COMPOSEDSTRING_TYPE)
  55. ASSERT(depth >= 0)
  56. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  57. return (internal_type | (depth << TYPE_SHIFT_DEPTH));
  58. }
  59. static int get_external_type (int type)
  60. {
  61. return (type & TYPE_MASK_EXTERNAL_TYPE);
  62. }
  63. static int get_internal_type (int type)
  64. {
  65. return (type & TYPE_MASK_INTERNAL_TYPE);
  66. }
  67. static int get_depth (int type)
  68. {
  69. return (type >> TYPE_SHIFT_DEPTH);
  70. }
  71. static int bump_depth (int *type_ptr, int elem_depth)
  72. {
  73. if (get_depth(*type_ptr) < elem_depth + 1) {
  74. if (elem_depth + 1 > NCDVAL_MAX_DEPTH) {
  75. return 0;
  76. }
  77. *type_ptr = make_type(get_internal_type(*type_ptr), elem_depth + 1);
  78. }
  79. return 1;
  80. }
  81. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  82. {
  83. ASSERT(idx >= 0)
  84. ASSERT(idx < o->used)
  85. return (o->buf ? o->buf : o->fastbuf) + idx;
  86. }
  87. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, NCDVal__idx alloc_size, NCDVal__idx align)
  88. {
  89. NCDVal__idx mod = o->used % align;
  90. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  91. if (alloc_size > NCDVAL_MAXIDX - align_extra) {
  92. return -1;
  93. }
  94. NCDVal__idx aligned_alloc_size = align_extra + alloc_size;
  95. if (aligned_alloc_size > o->size - o->used) {
  96. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  97. while (aligned_alloc_size > newsize - o->used) {
  98. if (newsize > NCDVAL_MAXIDX / 2) {
  99. return -1;
  100. }
  101. newsize *= 2;
  102. }
  103. char *newbuf;
  104. if (!o->buf) {
  105. newbuf = malloc(newsize);
  106. if (!newbuf) {
  107. return -1;
  108. }
  109. memcpy(newbuf, o->fastbuf, o->used);
  110. } else {
  111. newbuf = realloc(o->buf, newsize);
  112. if (!newbuf) {
  113. return -1;
  114. }
  115. }
  116. o->buf = newbuf;
  117. o->size = newsize;
  118. }
  119. NCDVal__idx idx = o->used + align_extra;
  120. o->used += aligned_alloc_size;
  121. return idx;
  122. }
  123. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  124. {
  125. ASSERT(idx == -1 || mem)
  126. NCDValRef ref = {mem, idx};
  127. return ref;
  128. }
  129. static void NCDVal__AssertMem (NCDValMem *mem)
  130. {
  131. ASSERT(mem)
  132. ASSERT(mem->size >= 0)
  133. ASSERT(mem->used >= 0)
  134. ASSERT(mem->used <= mem->size)
  135. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  136. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  137. }
  138. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  139. {
  140. #ifndef NDEBUG
  141. const char *e_cbuf = e_buf;
  142. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  143. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  144. #endif
  145. }
  146. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  147. {
  148. // placeholders
  149. if (idx < -1) {
  150. return;
  151. }
  152. ASSERT(idx >= 0)
  153. ASSERT(idx + sizeof(int) <= mem->used)
  154. #ifndef NDEBUG
  155. int *type_ptr = NCDValMem__BufAt(mem, idx);
  156. ASSERT(get_depth(*type_ptr) >= 0)
  157. ASSERT(get_depth(*type_ptr) <= NCDVAL_MAX_DEPTH)
  158. switch (get_internal_type(*type_ptr)) {
  159. case STOREDSTRING_TYPE: {
  160. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  161. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  162. ASSERT(str_e->length >= 0)
  163. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  164. } break;
  165. case NCDVAL_LIST: {
  166. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  167. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  168. ASSERT(list_e->maxcount >= 0)
  169. ASSERT(list_e->count >= 0)
  170. ASSERT(list_e->count <= list_e->maxcount)
  171. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  172. } break;
  173. case NCDVAL_MAP: {
  174. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  175. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  176. ASSERT(map_e->maxcount >= 0)
  177. ASSERT(map_e->count >= 0)
  178. ASSERT(map_e->count <= map_e->maxcount)
  179. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  180. } break;
  181. case IDSTRING_TYPE: {
  182. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  183. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  184. ASSERT(ids_e->string_id >= 0)
  185. ASSERT(ids_e->string_index)
  186. } break;
  187. case EXTERNALSTRING_TYPE: {
  188. ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used)
  189. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  190. ASSERT(exs_e->data)
  191. ASSERT(!exs_e->ref.target || exs_e->ref.next >= -1)
  192. ASSERT(!exs_e->ref.target || exs_e->ref.next < mem->used)
  193. } break;
  194. case COMPOSEDSTRING_TYPE: {
  195. ASSERT(idx + sizeof(struct NCDVal__composedstring) <= mem->used)
  196. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx);
  197. ASSERT(cms_e->func_getptr)
  198. ASSERT(!cms_e->ref.target || cms_e->ref.next >= -1)
  199. ASSERT(!cms_e->ref.target || cms_e->ref.next < mem->used)
  200. } break;
  201. default: ASSERT(0);
  202. }
  203. #endif
  204. }
  205. static void NCDVal__AssertVal (NCDValRef val)
  206. {
  207. NCDVal__AssertMem(val.mem);
  208. NCDVal__AssertValOnly(val.mem, val.idx);
  209. }
  210. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  211. {
  212. ASSERT(elemidx >= 0 || elemidx == -1)
  213. NCDValMapElem me = {elemidx};
  214. return me;
  215. }
  216. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  217. {
  218. #ifndef NDEBUG
  219. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  220. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  221. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  222. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  223. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  224. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  225. #endif
  226. }
  227. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  228. {
  229. ASSERT(NCDVal_IsMap(map))
  230. NCDVal__MapAssertElemOnly(map, me.elemidx);
  231. }
  232. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  233. {
  234. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  235. }
  236. static int NCDVal__Depth (NCDValRef val)
  237. {
  238. ASSERT(val.idx != -1)
  239. // handle placeholders
  240. if (val.idx < 0) {
  241. return 0;
  242. }
  243. int *elem_type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  244. int depth = get_depth(*elem_type_ptr);
  245. ASSERT(depth >= 0)
  246. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  247. return depth;
  248. }
  249. static int NCDValMem__NeedRegisterLink (NCDValMem *mem, NCDVal__idx val_idx)
  250. {
  251. NCDVal__AssertValOnly(mem, val_idx);
  252. return !(val_idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(mem, val_idx)) == COMPOSEDSTRING_TYPE;
  253. }
  254. static int NCDValMem__RegisterLink (NCDValMem *mem, NCDVal__idx val_idx, NCDVal__idx link_idx)
  255. {
  256. NCDVal__AssertValOnly(mem, val_idx);
  257. ASSERT(NCDValMem__NeedRegisterLink(mem, val_idx))
  258. NCDVal__idx cms_link_idx = NCDValMem__Alloc(mem, sizeof(struct NCDVal__cms_link), __alignof(struct NCDVal__cms_link));
  259. if (cms_link_idx < 0) {
  260. return 0;
  261. }
  262. struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, cms_link_idx);
  263. cms_link->link_idx = link_idx;
  264. cms_link->next_cms_link = mem->first_cms_link;
  265. mem->first_cms_link = cms_link_idx;
  266. return 1;
  267. }
  268. static void NCDValMem__PopLastRegisteredLink (NCDValMem *mem)
  269. {
  270. ASSERT(mem->first_cms_link != -1)
  271. struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, mem->first_cms_link);
  272. mem->first_cms_link = cms_link->next_cms_link;
  273. }
  274. static NCDValRef NCDVal__CopyComposedStringToStored (NCDValRef val)
  275. {
  276. ASSERT(NCDVal_IsComposedString(val))
  277. struct NCDVal__composedstring cms_e = *(struct NCDVal__composedstring *)NCDValMem__BufAt(val.mem, val.idx);
  278. NCDValRef copy = NCDVal_NewStringUninitialized(val.mem, cms_e.length);
  279. if (NCDVal_IsInvalid(copy)) {
  280. return NCDVal_NewInvalid();
  281. }
  282. char *copy_data = (char *)NCDVal_StringData(copy);
  283. size_t pos = 0;
  284. while (pos < cms_e.length) {
  285. const char *chunk_data;
  286. size_t chunk_len;
  287. cms_e.func_getptr(cms_e.user, cms_e.offset + pos, &chunk_data, &chunk_len);
  288. ASSERT(chunk_data)
  289. ASSERT(chunk_len > 0)
  290. if (chunk_len > cms_e.length - pos) {
  291. chunk_len = cms_e.length - pos;
  292. }
  293. memcpy(copy_data + pos, chunk_data, chunk_len);
  294. pos += chunk_len;
  295. }
  296. return copy;
  297. }
  298. static const char * NCDVal__composedstring_cstring_func (const b_cstring *cstr, size_t offset, size_t *out_length)
  299. {
  300. ASSERT(offset < cstr->length)
  301. ASSERT(out_length)
  302. ASSERT(cstr->func == NCDVal__composedstring_cstring_func)
  303. size_t str_offset = cstr->user1.size;
  304. NCDVal_ComposedString_func_getptr func_getptr = (NCDVal_ComposedString_func_getptr)cstr->user2.fptr;
  305. void *user = cstr->user3.ptr;
  306. const char *data;
  307. func_getptr(user, str_offset + offset, &data, out_length);
  308. ASSERT(data)
  309. ASSERT(*out_length > 0)
  310. return data;
  311. }
  312. #include "NCDVal_maptree.h"
  313. #include <structure/CAvl_impl.h>
  314. void NCDValMem_Init (NCDValMem *o)
  315. {
  316. o->buf = NULL;
  317. o->size = NCDVAL_FASTBUF_SIZE;
  318. o->used = 0;
  319. o->first_ref = -1;
  320. o->first_cms_link = -1;
  321. }
  322. void NCDValMem_Free (NCDValMem *o)
  323. {
  324. NCDVal__AssertMem(o);
  325. NCDVal__idx refidx = o->first_ref;
  326. while (refidx != -1) {
  327. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  328. ASSERT(ref->target)
  329. NCDRefTarget_Deref(ref->target);
  330. refidx = ref->next;
  331. }
  332. if (o->buf) {
  333. BFree(o->buf);
  334. }
  335. }
  336. int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other)
  337. {
  338. NCDVal__AssertMem(other);
  339. o->size = other->size;
  340. o->used = other->used;
  341. o->first_ref = other->first_ref;
  342. o->first_cms_link = other->first_cms_link;
  343. if (!other->buf) {
  344. o->buf = NULL;
  345. memcpy(o->fastbuf, other->fastbuf, other->used);
  346. } else {
  347. o->buf = BAlloc(other->size);
  348. if (!o->buf) {
  349. goto fail0;
  350. }
  351. memcpy(o->buf, other->buf, other->used);
  352. }
  353. NCDVal__idx refidx = o->first_ref;
  354. while (refidx != -1) {
  355. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  356. ASSERT(ref->target)
  357. if (!NCDRefTarget_Ref(ref->target)) {
  358. goto fail1;
  359. }
  360. refidx = ref->next;
  361. }
  362. return 1;
  363. fail1:;
  364. NCDVal__idx undo_refidx = o->first_ref;
  365. while (undo_refidx != refidx) {
  366. struct NCDVal__ref *ref = NCDValMem__BufAt(o, undo_refidx);
  367. NCDRefTarget_Deref(ref->target);
  368. undo_refidx = ref->next;
  369. }
  370. if (o->buf) {
  371. BFree(o->buf);
  372. }
  373. fail0:
  374. return 0;
  375. }
  376. int NCDValMem_ConvertNonContinuousStrings (NCDValMem *o, NCDValRef *root_val)
  377. {
  378. NCDVal__AssertMem(o);
  379. ASSERT(root_val)
  380. ASSERT(root_val->mem == o)
  381. NCDVal__AssertValOnly(o, root_val->idx);
  382. while (o->first_cms_link != -1) {
  383. struct NCDVal__cms_link cms_link = *(struct NCDVal__cms_link *)NCDValMem__BufAt(o, o->first_cms_link);
  384. NCDVal__idx val_idx = *(NCDVal__idx *)NCDValMem__BufAt(o, cms_link.link_idx);
  385. NCDValRef val = NCDVal__Ref(o, val_idx);
  386. ASSERT(NCDVal_IsComposedString(val))
  387. NCDValRef copy = NCDVal__CopyComposedStringToStored(val);
  388. if (NCDVal_IsInvalid(copy)) {
  389. return 0;
  390. }
  391. *(int *)NCDValMem__BufAt(o, cms_link.link_idx) = copy.idx;
  392. o->first_cms_link = cms_link.next_cms_link;
  393. }
  394. if (NCDVal_IsComposedString(*root_val)) {
  395. NCDValRef copy = NCDVal__CopyComposedStringToStored(*root_val);
  396. if (NCDVal_IsInvalid(copy)) {
  397. return 0;
  398. }
  399. *root_val = copy;
  400. }
  401. return 1;
  402. }
  403. void NCDVal_Assert (NCDValRef val)
  404. {
  405. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  406. }
  407. int NCDVal_IsInvalid (NCDValRef val)
  408. {
  409. NCDVal_Assert(val);
  410. return (val.idx == -1);
  411. }
  412. int NCDVal_IsPlaceholder (NCDValRef val)
  413. {
  414. NCDVal_Assert(val);
  415. return (val.idx < -1);
  416. }
  417. int NCDVal_Type (NCDValRef val)
  418. {
  419. NCDVal__AssertVal(val);
  420. if (val.idx < -1) {
  421. return NCDVAL_PLACEHOLDER;
  422. }
  423. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  424. return get_external_type(*type_ptr);
  425. }
  426. NCDValRef NCDVal_NewInvalid (void)
  427. {
  428. NCDValRef ref = {NULL, -1};
  429. return ref;
  430. }
  431. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  432. {
  433. NCDVal__AssertMem(mem);
  434. ASSERT(plid >= 0)
  435. ASSERT(NCDVAL_MINIDX + plid < -1)
  436. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  437. return ref;
  438. }
  439. int NCDVal_PlaceholderId (NCDValRef val)
  440. {
  441. ASSERT(NCDVal_IsPlaceholder(val))
  442. return (val.idx - NCDVAL_MINIDX);
  443. }
  444. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  445. {
  446. NCDVal__AssertMem(mem);
  447. NCDVal__AssertVal(val);
  448. if (val.idx < -1) {
  449. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  450. }
  451. void *ptr = NCDValMem__BufAt(val.mem, val.idx);
  452. switch (get_internal_type(*(int *)ptr)) {
  453. case STOREDSTRING_TYPE: {
  454. struct NCDVal__string *str_e = ptr;
  455. NCDVal__idx size = sizeof(struct NCDVal__string) + str_e->length + 1;
  456. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  457. if (idx < 0) {
  458. goto fail;
  459. }
  460. str_e = NCDValMem__BufAt(val.mem, val.idx);
  461. struct NCDVal__string *new_str_e = NCDValMem__BufAt(mem, idx);
  462. memcpy(new_str_e, str_e, size);
  463. return NCDVal__Ref(mem, idx);
  464. } break;
  465. case NCDVAL_LIST: {
  466. struct NCDVal__list *list_e = ptr;
  467. NCDVal__idx size = sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx);
  468. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  469. if (idx < 0) {
  470. goto fail;
  471. }
  472. list_e = NCDValMem__BufAt(val.mem, val.idx);
  473. struct NCDVal__list *new_list_e = NCDValMem__BufAt(mem, idx);
  474. *new_list_e = *list_e;
  475. NCDVal__idx count = list_e->count;
  476. for (NCDVal__idx i = 0; i < count; i++) {
  477. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal__Ref(val.mem, list_e->elem_indices[i]));
  478. if (NCDVal_IsInvalid(elem_copy)) {
  479. goto fail;
  480. }
  481. if (NCDValMem__NeedRegisterLink(mem, elem_copy.idx)) {
  482. if (!NCDValMem__RegisterLink(mem, elem_copy.idx, idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx))) {
  483. goto fail;
  484. }
  485. }
  486. list_e = NCDValMem__BufAt(val.mem, val.idx);
  487. new_list_e = NCDValMem__BufAt(mem, idx);
  488. new_list_e->elem_indices[i] = elem_copy.idx;
  489. }
  490. return NCDVal__Ref(mem, idx);
  491. } break;
  492. case NCDVAL_MAP: {
  493. size_t count = NCDVal_MapCount(val);
  494. NCDValRef copy = NCDVal_NewMap(mem, count);
  495. if (NCDVal_IsInvalid(copy)) {
  496. goto fail;
  497. }
  498. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  499. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  500. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  501. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  502. goto fail;
  503. }
  504. int inserted;
  505. if (!NCDVal_MapInsert(copy, key_copy, val_copy, &inserted)) {
  506. goto fail;
  507. }
  508. ASSERT_EXECUTE(inserted)
  509. }
  510. return copy;
  511. } break;
  512. case IDSTRING_TYPE: {
  513. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  514. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  515. if (idx < 0) {
  516. goto fail;
  517. }
  518. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(val.mem, val.idx);
  519. struct NCDVal__idstring *new_ids_e = NCDValMem__BufAt(mem, idx);
  520. *new_ids_e = *ids_e;
  521. return NCDVal__Ref(mem, idx);
  522. } break;
  523. case EXTERNALSTRING_TYPE: {
  524. struct NCDVal__externalstring *exs_e = ptr;
  525. return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target);
  526. } break;
  527. case COMPOSEDSTRING_TYPE: {
  528. struct NCDVal__composedstring *cms_e = ptr;
  529. NCDValComposedStringResource resource;
  530. resource.func_getptr = cms_e->func_getptr;
  531. resource.user = cms_e->user;
  532. resource.ref_target = cms_e->ref.target;
  533. return NCDVal_NewComposedString(mem, resource, cms_e->offset, cms_e->length);
  534. } break;
  535. default: ASSERT(0);
  536. }
  537. ASSERT(0);
  538. fail:
  539. return NCDVal_NewInvalid();
  540. }
  541. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  542. {
  543. NCDVal__AssertVal(val1);
  544. NCDVal__AssertVal(val2);
  545. int type1 = NCDVal_Type(val1);
  546. int type2 = NCDVal_Type(val2);
  547. if (type1 != type2) {
  548. return (type1 > type2) - (type1 < type2);
  549. }
  550. switch (type1) {
  551. case NCDVAL_STRING: {
  552. size_t len1 = NCDVal_StringLength(val1);
  553. size_t len2 = NCDVal_StringLength(val2);
  554. size_t min_len = len1 < len2 ? len1 : len2;
  555. int cmp = NCDVal_StringMemCmp(val1, val2, 0, 0, min_len);
  556. if (cmp) {
  557. return (cmp > 0) - (cmp < 0);
  558. }
  559. return (len1 > len2) - (len1 < len2);
  560. } break;
  561. case NCDVAL_LIST: {
  562. size_t count1 = NCDVal_ListCount(val1);
  563. size_t count2 = NCDVal_ListCount(val2);
  564. size_t min_count = count1 < count2 ? count1 : count2;
  565. for (size_t i = 0; i < min_count; i++) {
  566. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  567. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  568. int cmp = NCDVal_Compare(ev1, ev2);
  569. if (cmp) {
  570. return cmp;
  571. }
  572. }
  573. return (count1 > count2) - (count1 < count2);
  574. } break;
  575. case NCDVAL_MAP: {
  576. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  577. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  578. while (1) {
  579. int inv1 = NCDVal_MapElemInvalid(e1);
  580. int inv2 = NCDVal_MapElemInvalid(e2);
  581. if (inv1 || inv2) {
  582. return inv2 - inv1;
  583. }
  584. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  585. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  586. int cmp = NCDVal_Compare(key1, key2);
  587. if (cmp) {
  588. return cmp;
  589. }
  590. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  591. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  592. cmp = NCDVal_Compare(value1, value2);
  593. if (cmp) {
  594. return cmp;
  595. }
  596. e1 = NCDVal_MapOrderedNext(val1, e1);
  597. e2 = NCDVal_MapOrderedNext(val2, e2);
  598. }
  599. } break;
  600. case NCDVAL_PLACEHOLDER: {
  601. int plid1 = NCDVal_PlaceholderId(val1);
  602. int plid2 = NCDVal_PlaceholderId(val2);
  603. return (plid1 > plid2) - (plid1 < plid2);
  604. } break;
  605. default:
  606. ASSERT(0);
  607. return 0;
  608. }
  609. }
  610. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  611. {
  612. NCDVal_Assert(val);
  613. NCDValSafeRef sval = {val.idx};
  614. return sval;
  615. }
  616. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  617. {
  618. NCDVal__AssertMem(mem);
  619. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  620. NCDValRef val = {mem, sval.idx};
  621. return val;
  622. }
  623. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  624. {
  625. NCDVal__AssertMem(mem);
  626. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  627. NCDValRef val2 = {mem, val.idx};
  628. return val2;
  629. }
  630. int NCDVal_HasOnlyContinuousStrings (NCDValRef val)
  631. {
  632. NCDVal__AssertVal(val);
  633. switch (NCDVal_Type(val)) {
  634. case NCDVAL_STRING: {
  635. if (!NCDVal_IsContinuousString(val)) {
  636. return 0;
  637. }
  638. } break;
  639. case NCDVAL_LIST: {
  640. size_t count = NCDVal_ListCount(val);
  641. for (size_t i = 0; i < count; i++) {
  642. NCDValRef elem = NCDVal_ListGet(val, i);
  643. if (!NCDVal_HasOnlyContinuousStrings(elem)) {
  644. return 0;
  645. }
  646. }
  647. } break;
  648. case NCDVAL_MAP: {
  649. for (NCDValMapElem me = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(me); me = NCDVal_MapNext(val, me)) {
  650. NCDValRef e_key = NCDVal_MapElemKey(val, me);
  651. NCDValRef e_val = NCDVal_MapElemVal(val, me);
  652. if (!NCDVal_HasOnlyContinuousStrings(e_key) || !NCDVal_HasOnlyContinuousStrings(e_val)) {
  653. return 0;
  654. }
  655. }
  656. } break;
  657. case NCDVAL_PLACEHOLDER: {
  658. } break;
  659. default:
  660. ASSERT(0);
  661. }
  662. return 1;
  663. }
  664. int NCDVal_IsString (NCDValRef val)
  665. {
  666. NCDVal__AssertVal(val);
  667. return NCDVal_Type(val) == NCDVAL_STRING;
  668. }
  669. int NCDVal_IsContinuousString (NCDValRef val)
  670. {
  671. NCDVal__AssertVal(val);
  672. if (val.idx < -1) {
  673. return 0;
  674. }
  675. switch (get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx))) {
  676. case STOREDSTRING_TYPE:
  677. case IDSTRING_TYPE:
  678. case EXTERNALSTRING_TYPE:
  679. return 1;
  680. default:
  681. return 0;
  682. }
  683. }
  684. int NCDVal_IsStoredString (NCDValRef val)
  685. {
  686. NCDVal__AssertVal(val);
  687. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == STOREDSTRING_TYPE;
  688. }
  689. int NCDVal_IsIdString (NCDValRef val)
  690. {
  691. NCDVal__AssertVal(val);
  692. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == IDSTRING_TYPE;
  693. }
  694. int NCDVal_IsExternalString (NCDValRef val)
  695. {
  696. NCDVal__AssertVal(val);
  697. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == EXTERNALSTRING_TYPE;
  698. }
  699. int NCDVal_IsComposedString (NCDValRef val)
  700. {
  701. NCDVal__AssertVal(val);
  702. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == COMPOSEDSTRING_TYPE;
  703. }
  704. int NCDVal_IsStringNoNulls (NCDValRef val)
  705. {
  706. NCDVal__AssertVal(val);
  707. return NCDVal_Type(val) == NCDVAL_STRING && !NCDVal_StringHasNulls(val);
  708. }
  709. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  710. {
  711. NCDVal__AssertMem(mem);
  712. ASSERT(data)
  713. NCDVal_AssertExternal(mem, data, strlen(data));
  714. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  715. }
  716. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  717. {
  718. NCDVal__AssertMem(mem);
  719. ASSERT(len == 0 || data)
  720. NCDVal_AssertExternal(mem, data, len);
  721. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  722. goto fail;
  723. }
  724. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  725. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  726. if (idx < 0) {
  727. goto fail;
  728. }
  729. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  730. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  731. str_e->length = len;
  732. if (len > 0) {
  733. memcpy(str_e->data, data, len);
  734. }
  735. str_e->data[len] = '\0';
  736. return NCDVal__Ref(mem, idx);
  737. fail:
  738. return NCDVal_NewInvalid();
  739. }
  740. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  741. {
  742. NCDVal__AssertMem(mem);
  743. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  744. goto fail;
  745. }
  746. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  747. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  748. if (idx < 0) {
  749. goto fail;
  750. }
  751. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  752. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  753. str_e->length = len;
  754. str_e->data[len] = '\0';
  755. return NCDVal__Ref(mem, idx);
  756. fail:
  757. return NCDVal_NewInvalid();
  758. }
  759. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index)
  760. {
  761. NCDVal__AssertMem(mem);
  762. ASSERT(string_id >= 0)
  763. ASSERT(string_index)
  764. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  765. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  766. if (idx < 0) {
  767. goto fail;
  768. }
  769. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  770. ids_e->type = make_type(IDSTRING_TYPE, 0);
  771. ids_e->string_id = string_id;
  772. ids_e->string_index = string_index;
  773. return NCDVal__Ref(mem, idx);
  774. fail:
  775. return NCDVal_NewInvalid();
  776. }
  777. NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len,
  778. NCDRefTarget *ref_target)
  779. {
  780. NCDVal__AssertMem(mem);
  781. ASSERT(data)
  782. NCDVal_AssertExternal(mem, data, len);
  783. NCDVal__idx size = sizeof(struct NCDVal__externalstring);
  784. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__externalstring));
  785. if (idx < 0) {
  786. goto fail;
  787. }
  788. if (ref_target) {
  789. if (!NCDRefTarget_Ref(ref_target)) {
  790. goto fail;
  791. }
  792. }
  793. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  794. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  795. exs_e->data = data;
  796. exs_e->length = len;
  797. exs_e->ref.target = ref_target;
  798. if (ref_target) {
  799. exs_e->ref.next = mem->first_ref;
  800. mem->first_ref = idx + offsetof(struct NCDVal__externalstring, ref);
  801. }
  802. return NCDVal__Ref(mem, idx);
  803. fail:
  804. return NCDVal_NewInvalid();
  805. }
  806. NCDValRef NCDVal_NewComposedString (NCDValMem *mem, NCDValComposedStringResource resource, size_t offset, size_t length)
  807. {
  808. NCDVal__AssertMem(mem);
  809. ASSERT(resource.func_getptr)
  810. NCDVal__idx size = sizeof(struct NCDVal__composedstring);
  811. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__composedstring));
  812. if (idx < 0) {
  813. goto fail;
  814. }
  815. if (resource.ref_target) {
  816. if (!NCDRefTarget_Ref(resource.ref_target)) {
  817. goto fail;
  818. }
  819. }
  820. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx);
  821. cms_e->type = make_type(COMPOSEDSTRING_TYPE, 0);
  822. cms_e->offset = offset;
  823. cms_e->length = length;
  824. cms_e->func_getptr = resource.func_getptr;
  825. cms_e->user = resource.user;
  826. cms_e->ref.target = resource.ref_target;
  827. if (resource.ref_target) {
  828. cms_e->ref.next = mem->first_ref;
  829. mem->first_ref = idx + offsetof(struct NCDVal__composedstring, ref);
  830. }
  831. return NCDVal__Ref(mem, idx);
  832. fail:
  833. return NCDVal_NewInvalid();
  834. }
  835. const char * NCDVal_StringData (NCDValRef contstring)
  836. {
  837. ASSERT(NCDVal_IsContinuousString(contstring))
  838. void *ptr = NCDValMem__BufAt(contstring.mem, contstring.idx);
  839. switch (get_internal_type(*(int *)ptr)) {
  840. case STOREDSTRING_TYPE: {
  841. struct NCDVal__string *str_e = ptr;
  842. return str_e->data;
  843. } break;
  844. case IDSTRING_TYPE: {
  845. struct NCDVal__idstring *ids_e = ptr;
  846. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  847. return value;
  848. } break;
  849. case EXTERNALSTRING_TYPE: {
  850. struct NCDVal__externalstring *exs_e = ptr;
  851. return exs_e->data;
  852. } break;
  853. default:
  854. ASSERT(0);
  855. return NULL;
  856. }
  857. }
  858. size_t NCDVal_StringLength (NCDValRef string)
  859. {
  860. ASSERT(NCDVal_IsString(string))
  861. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  862. switch (get_internal_type(*(int *)ptr)) {
  863. case STOREDSTRING_TYPE: {
  864. struct NCDVal__string *str_e = ptr;
  865. return str_e->length;
  866. } break;
  867. case IDSTRING_TYPE: {
  868. struct NCDVal__idstring *ids_e = ptr;
  869. return NCDStringIndex_Length(ids_e->string_index, ids_e->string_id);
  870. } break;
  871. case EXTERNALSTRING_TYPE: {
  872. struct NCDVal__externalstring *exs_e = ptr;
  873. return exs_e->length;
  874. } break;
  875. case COMPOSEDSTRING_TYPE: {
  876. struct NCDVal__composedstring *cms_e = ptr;
  877. return cms_e->length;
  878. } break;
  879. default:
  880. ASSERT(0);
  881. return 0;
  882. }
  883. }
  884. b_cstring NCDValComposedStringResource_Cstring (NCDValComposedStringResource resource, size_t offset, size_t length)
  885. {
  886. b_cstring cstr;
  887. cstr.length = length;
  888. cstr.func = NCDVal__composedstring_cstring_func;
  889. cstr.user1.size = offset;
  890. cstr.user2.fptr = (void (*) (void))resource.func_getptr;
  891. cstr.user3.ptr = resource.user;
  892. return cstr;
  893. }
  894. b_cstring NCDVal_StringCstring (NCDValRef string)
  895. {
  896. ASSERT(NCDVal_IsString(string))
  897. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  898. switch (get_internal_type(*(int *)ptr)) {
  899. case STOREDSTRING_TYPE: {
  900. struct NCDVal__string *str_e = ptr;
  901. return b_cstring_make_buf(str_e->data, str_e->length);
  902. } break;
  903. case IDSTRING_TYPE: {
  904. struct NCDVal__idstring *ids_e = ptr;
  905. return b_cstring_make_buf(NCDStringIndex_Value(ids_e->string_index, ids_e->string_id), NCDStringIndex_Length(ids_e->string_index, ids_e->string_id));
  906. } break;
  907. case EXTERNALSTRING_TYPE: {
  908. struct NCDVal__externalstring *exs_e = ptr;
  909. return b_cstring_make_buf(exs_e->data, exs_e->length);
  910. } break;
  911. case COMPOSEDSTRING_TYPE: {
  912. struct NCDVal__composedstring *cms_e = ptr;
  913. b_cstring cstr;
  914. cstr.length = cms_e->length;
  915. cstr.func = NCDVal__composedstring_cstring_func;
  916. cstr.user1.size = cms_e->offset;
  917. cstr.user2.fptr = (void (*) (void))cms_e->func_getptr;
  918. cstr.user3.ptr = cms_e->user;
  919. return cstr;
  920. } break;
  921. default: {
  922. ASSERT(0);
  923. return b_cstring_make_empty();
  924. } break;
  925. }
  926. }
  927. int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out)
  928. {
  929. ASSERT(NCDVal_IsString(string))
  930. ASSERT(out)
  931. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  932. switch (get_internal_type(*(int *)ptr)) {
  933. case STOREDSTRING_TYPE: {
  934. struct NCDVal__string *str_e = ptr;
  935. out->data = str_e->data;
  936. out->is_allocated = 0;
  937. return 1;
  938. } break;
  939. case IDSTRING_TYPE: {
  940. struct NCDVal__idstring *ids_e = ptr;
  941. out->data = (char *)NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  942. out->is_allocated = 0;
  943. return 1;
  944. } break;
  945. case EXTERNALSTRING_TYPE: {
  946. struct NCDVal__externalstring *exs_e = ptr;
  947. char *copy = b_strdup_bin(exs_e->data, exs_e->length);
  948. if (!copy) {
  949. return 0;
  950. }
  951. out->data = copy;
  952. out->is_allocated = 1;
  953. return 1;
  954. } break;
  955. case COMPOSEDSTRING_TYPE: {
  956. struct NCDVal__composedstring *cms_e = ptr;
  957. size_t length = cms_e->length;
  958. if (length == SIZE_MAX) {
  959. return 0;
  960. }
  961. char *copy = BAlloc(length + 1);
  962. if (!copy) {
  963. return 0;
  964. }
  965. NCDVal_StringCopyOut(string, 0, length, copy);
  966. copy[length] = '\0';
  967. out->data = copy;
  968. out->is_allocated = 1;
  969. return 1;
  970. } break;
  971. default:
  972. ASSERT(0);
  973. return 0;
  974. }
  975. }
  976. NCDValNullTermString NCDValNullTermString_NewDummy (void)
  977. {
  978. NCDValNullTermString nts;
  979. nts.data = NULL;
  980. nts.is_allocated = 0;
  981. return nts;
  982. }
  983. void NCDValNullTermString_Free (NCDValNullTermString *o)
  984. {
  985. if (o->is_allocated) {
  986. BFree(o->data);
  987. }
  988. }
  989. int NCDVal_StringContinuize (NCDValRef string, NCDValContString *out)
  990. {
  991. ASSERT(NCDVal_IsString(string))
  992. ASSERT(out)
  993. if (NCDVal_IsContinuousString(string)) {
  994. out->data = (char *)NCDVal_StringData(string);
  995. out->is_allocated = 0;
  996. return 1;
  997. }
  998. size_t length = NCDVal_StringLength(string);
  999. char *data = BAlloc(length);
  1000. if (!data) {
  1001. return 0;
  1002. }
  1003. NCDVal_StringCopyOut(string, 0, length, data);
  1004. out->data = data;
  1005. out->is_allocated = 1;
  1006. return 1;
  1007. }
  1008. NCDValContString NCDValContString_NewDummy (void)
  1009. {
  1010. NCDValContString cts;
  1011. cts.data = NULL;
  1012. cts.is_allocated = 0;
  1013. return cts;
  1014. }
  1015. void NCDValContString_Free (NCDValContString *o)
  1016. {
  1017. if (o->is_allocated) {
  1018. BFree(o->data);
  1019. }
  1020. }
  1021. void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id,
  1022. NCDStringIndex **out_string_index)
  1023. {
  1024. ASSERT(NCDVal_IsIdString(idstring))
  1025. ASSERT(out_string_id)
  1026. ASSERT(out_string_index)
  1027. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  1028. *out_string_id = ids_e->string_id;
  1029. *out_string_index = ids_e->string_index;
  1030. }
  1031. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  1032. {
  1033. ASSERT(NCDVal_IsIdString(idstring))
  1034. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  1035. return ids_e->string_id;
  1036. }
  1037. NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring)
  1038. {
  1039. ASSERT(NCDVal_IsIdString(idstring))
  1040. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  1041. return ids_e->string_index;
  1042. }
  1043. NCDRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring)
  1044. {
  1045. ASSERT(NCDVal_IsExternalString(externalstring))
  1046. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(externalstring.mem, externalstring.idx);
  1047. return exs_e->ref.target;
  1048. }
  1049. NCDValComposedStringResource NCDVal_ComposedStringResource (NCDValRef composedstring)
  1050. {
  1051. ASSERT(NCDVal_IsComposedString(composedstring))
  1052. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx);
  1053. NCDValComposedStringResource res;
  1054. res.func_getptr = cms_e->func_getptr;
  1055. res.user = cms_e->user;
  1056. res.ref_target = cms_e->ref.target;
  1057. return res;
  1058. }
  1059. size_t NCDVal_ComposedStringOffset (NCDValRef composedstring)
  1060. {
  1061. ASSERT(NCDVal_IsComposedString(composedstring))
  1062. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx);
  1063. return cms_e->offset;
  1064. }
  1065. int NCDVal_StringHasNulls (NCDValRef string)
  1066. {
  1067. ASSERT(NCDVal_IsString(string))
  1068. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  1069. switch (get_internal_type(*(int *)ptr)) {
  1070. case IDSTRING_TYPE: {
  1071. struct NCDVal__idstring *ids_e = ptr;
  1072. return NCDStringIndex_HasNulls(ids_e->string_index, ids_e->string_id);
  1073. } break;
  1074. case STOREDSTRING_TYPE:
  1075. case EXTERNALSTRING_TYPE: {
  1076. const char *data = NCDVal_StringData(string);
  1077. size_t length = NCDVal_StringLength(string);
  1078. return !!memchr(data, '\0', length);
  1079. } break;
  1080. case COMPOSEDSTRING_TYPE: {
  1081. b_cstring cstr = NCDVal_StringCstring(string);
  1082. return b_cstring_memchr(cstr, 0, cstr.length, '\0', NULL);
  1083. } break;
  1084. default:
  1085. ASSERT(0);
  1086. return 0;
  1087. }
  1088. }
  1089. int NCDVal_StringEquals (NCDValRef string, const char *data)
  1090. {
  1091. ASSERT(NCDVal_IsString(string))
  1092. ASSERT(data)
  1093. size_t data_len = strlen(data);
  1094. return NCDVal_StringLength(string) == data_len && NCDVal_StringRegionEquals(string, 0, data_len, data);
  1095. }
  1096. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id,
  1097. NCDStringIndex *string_index)
  1098. {
  1099. ASSERT(NCDVal_IsString(string))
  1100. ASSERT(string_id >= 0)
  1101. ASSERT(string_index)
  1102. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  1103. switch (get_internal_type(*(int *)ptr)) {
  1104. case STOREDSTRING_TYPE: {
  1105. struct NCDVal__string *str_e = ptr;
  1106. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1107. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1108. return (string_length == str_e->length) && !memcmp(string_data, str_e->data, string_length);
  1109. } break;
  1110. case IDSTRING_TYPE: {
  1111. struct NCDVal__idstring *ids_e = ptr;
  1112. ASSERT(ids_e->string_index == string_index)
  1113. return ids_e->string_id == string_id;
  1114. } break;
  1115. case EXTERNALSTRING_TYPE: {
  1116. struct NCDVal__externalstring *exs_e = ptr;
  1117. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1118. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1119. return (string_length == exs_e->length) && !memcmp(string_data, exs_e->data, string_length);
  1120. } break;
  1121. case COMPOSEDSTRING_TYPE: {
  1122. struct NCDVal__composedstring *cms_e = ptr;
  1123. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1124. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1125. return (string_length == cms_e->length) && NCDVal_StringRegionEquals(string, 0, string_length, string_data);
  1126. } break;
  1127. default:
  1128. ASSERT(0);
  1129. return 0;
  1130. }
  1131. }
  1132. int NCDVal_StringMemCmp (NCDValRef string1, NCDValRef string2, size_t start1, size_t start2, size_t length)
  1133. {
  1134. ASSERT(NCDVal_IsString(string1))
  1135. ASSERT(NCDVal_IsString(string2))
  1136. ASSERT(start1 <= NCDVal_StringLength(string1))
  1137. ASSERT(start2 <= NCDVal_StringLength(string2))
  1138. ASSERT(length <= NCDVal_StringLength(string1) - start1)
  1139. ASSERT(length <= NCDVal_StringLength(string2) - start2)
  1140. if (NCDVal_IsContinuousString(string1) && NCDVal_IsContinuousString(string2)) {
  1141. return memcmp(NCDVal_StringData(string1) + start1, NCDVal_StringData(string2) + start2, length);
  1142. }
  1143. b_cstring cstr1 = NCDVal_StringCstring(string1);
  1144. b_cstring cstr2 = NCDVal_StringCstring(string2);
  1145. return b_cstring_memcmp(cstr1, cstr2, start1, start2, length);
  1146. }
  1147. void NCDVal_StringCopyOut (NCDValRef string, size_t start, size_t length, char *dst)
  1148. {
  1149. ASSERT(NCDVal_IsString(string))
  1150. ASSERT(start <= NCDVal_StringLength(string))
  1151. ASSERT(length <= NCDVal_StringLength(string) - start)
  1152. if (NCDVal_IsContinuousString(string)) {
  1153. memcpy(dst, NCDVal_StringData(string) + start, length);
  1154. return;
  1155. }
  1156. b_cstring cstr = NCDVal_StringCstring(string);
  1157. b_cstring_copy_to_buf(cstr, start, length, dst);
  1158. }
  1159. int NCDVal_StringRegionEquals (NCDValRef string, size_t start, size_t length, const char *data)
  1160. {
  1161. ASSERT(NCDVal_IsString(string))
  1162. ASSERT(start <= NCDVal_StringLength(string))
  1163. ASSERT(length <= NCDVal_StringLength(string) - start)
  1164. if (NCDVal_IsContinuousString(string)) {
  1165. return !memcmp(NCDVal_StringData(string) + start, data, length);
  1166. }
  1167. b_cstring cstr = NCDVal_StringCstring(string);
  1168. return b_cstring_equals_buffer(cstr, start, length, data);
  1169. }
  1170. int NCDVal_IsList (NCDValRef val)
  1171. {
  1172. NCDVal__AssertVal(val);
  1173. return NCDVal_Type(val) == NCDVAL_LIST;
  1174. }
  1175. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  1176. {
  1177. NCDVal__AssertMem(mem);
  1178. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__list)) / sizeof(NCDVal__idx)) {
  1179. goto fail;
  1180. }
  1181. NCDVal__idx size = sizeof(struct NCDVal__list) + maxcount * sizeof(NCDVal__idx);
  1182. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  1183. if (idx < 0) {
  1184. goto fail;
  1185. }
  1186. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  1187. list_e->type = make_type(NCDVAL_LIST, 0);
  1188. list_e->maxcount = maxcount;
  1189. list_e->count = 0;
  1190. return NCDVal__Ref(mem, idx);
  1191. fail:
  1192. return NCDVal_NewInvalid();
  1193. }
  1194. int NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  1195. {
  1196. ASSERT(NCDVal_IsList(list))
  1197. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  1198. ASSERT(elem.mem == list.mem)
  1199. NCDVal__AssertValOnly(list.mem, elem.idx);
  1200. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1201. int new_type = list_e->type;
  1202. if (!bump_depth(&new_type, NCDVal__Depth(elem))) {
  1203. return 0;
  1204. }
  1205. if (NCDValMem__NeedRegisterLink(list.mem, elem.idx)) {
  1206. if (!NCDValMem__RegisterLink(list.mem, elem.idx, list.idx + offsetof(struct NCDVal__list, elem_indices) + list_e->count * sizeof(NCDVal__idx))) {
  1207. return 0;
  1208. }
  1209. list_e = NCDValMem__BufAt(list.mem, list.idx);
  1210. }
  1211. list_e->type = new_type;
  1212. list_e->elem_indices[list_e->count++] = elem.idx;
  1213. return 1;
  1214. }
  1215. size_t NCDVal_ListCount (NCDValRef list)
  1216. {
  1217. ASSERT(NCDVal_IsList(list))
  1218. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1219. return list_e->count;
  1220. }
  1221. size_t NCDVal_ListMaxCount (NCDValRef list)
  1222. {
  1223. ASSERT(NCDVal_IsList(list))
  1224. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1225. return list_e->maxcount;
  1226. }
  1227. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  1228. {
  1229. ASSERT(NCDVal_IsList(list))
  1230. ASSERT(pos < NCDVal_ListCount(list))
  1231. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1232. ASSERT(pos < list_e->count)
  1233. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  1234. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  1235. }
  1236. int NCDVal_ListRead (NCDValRef list, int num, ...)
  1237. {
  1238. ASSERT(NCDVal_IsList(list))
  1239. ASSERT(num >= 0)
  1240. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1241. if (num != list_e->count) {
  1242. return 0;
  1243. }
  1244. va_list ap;
  1245. va_start(ap, num);
  1246. for (int i = 0; i < num; i++) {
  1247. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1248. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1249. }
  1250. va_end(ap);
  1251. return 1;
  1252. }
  1253. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  1254. {
  1255. ASSERT(NCDVal_IsList(list))
  1256. ASSERT(num >= 0)
  1257. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1258. if (num > list_e->count) {
  1259. return 0;
  1260. }
  1261. va_list ap;
  1262. va_start(ap, num);
  1263. for (int i = 0; i < num; i++) {
  1264. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1265. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1266. }
  1267. va_end(ap);
  1268. return 1;
  1269. }
  1270. int NCDVal_IsMap (NCDValRef val)
  1271. {
  1272. NCDVal__AssertVal(val);
  1273. return NCDVal_Type(val) == NCDVAL_MAP;
  1274. }
  1275. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  1276. {
  1277. NCDVal__AssertMem(mem);
  1278. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__map)) / sizeof(struct NCDVal__mapelem)) {
  1279. goto fail;
  1280. }
  1281. NCDVal__idx size = sizeof(struct NCDVal__map) + maxcount * sizeof(struct NCDVal__mapelem);
  1282. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  1283. if (idx < 0) {
  1284. goto fail;
  1285. }
  1286. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  1287. map_e->type = make_type(NCDVAL_MAP, 0);
  1288. map_e->maxcount = maxcount;
  1289. map_e->count = 0;
  1290. NCDVal__MapTree_Init(&map_e->tree);
  1291. return NCDVal__Ref(mem, idx);
  1292. fail:
  1293. return NCDVal_NewInvalid();
  1294. }
  1295. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val, int *out_inserted)
  1296. {
  1297. ASSERT(NCDVal_IsMap(map))
  1298. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  1299. ASSERT(key.mem == map.mem)
  1300. ASSERT(val.mem == map.mem)
  1301. NCDVal__AssertValOnly(map.mem, key.idx);
  1302. NCDVal__AssertValOnly(map.mem, val.idx);
  1303. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1304. int new_type = map_e->type;
  1305. if (!bump_depth(&new_type, NCDVal__Depth(key)) || !bump_depth(&new_type, NCDVal__Depth(val))) {
  1306. goto fail0;
  1307. }
  1308. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  1309. if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) {
  1310. if (!NCDValMem__RegisterLink(map.mem, key.idx, elemidx + offsetof(struct NCDVal__mapelem, key_idx))) {
  1311. goto fail0;
  1312. }
  1313. map_e = NCDValMem__BufAt(map.mem, map.idx);
  1314. }
  1315. if (NCDValMem__NeedRegisterLink(map.mem, val.idx)) {
  1316. if (!NCDValMem__RegisterLink(map.mem, val.idx, elemidx + offsetof(struct NCDVal__mapelem, val_idx))) {
  1317. goto fail1;
  1318. }
  1319. map_e = NCDValMem__BufAt(map.mem, map.idx);
  1320. }
  1321. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  1322. ASSERT(me_e == &map_e->elems[map_e->count])
  1323. me_e->key_idx = key.idx;
  1324. me_e->val_idx = val.idx;
  1325. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  1326. if (!res) {
  1327. if (out_inserted) {
  1328. *out_inserted = 0;
  1329. }
  1330. return 1;
  1331. }
  1332. map_e->type = new_type;
  1333. map_e->count++;
  1334. if (out_inserted) {
  1335. *out_inserted = 1;
  1336. }
  1337. return 1;
  1338. fail1:
  1339. if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) {
  1340. NCDValMem__PopLastRegisteredLink(map.mem);
  1341. }
  1342. fail0:
  1343. return 0;
  1344. }
  1345. size_t NCDVal_MapCount (NCDValRef map)
  1346. {
  1347. ASSERT(NCDVal_IsMap(map))
  1348. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1349. return map_e->count;
  1350. }
  1351. size_t NCDVal_MapMaxCount (NCDValRef map)
  1352. {
  1353. ASSERT(NCDVal_IsMap(map))
  1354. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1355. return map_e->maxcount;
  1356. }
  1357. int NCDVal_MapElemInvalid (NCDValMapElem me)
  1358. {
  1359. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  1360. return me.elemidx < 0;
  1361. }
  1362. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  1363. {
  1364. ASSERT(NCDVal_IsMap(map))
  1365. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1366. if (map_e->count == 0) {
  1367. return NCDVal__MapElem(-1);
  1368. }
  1369. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  1370. NCDVal__MapAssertElemOnly(map, elemidx);
  1371. return NCDVal__MapElem(elemidx);
  1372. }
  1373. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  1374. {
  1375. NCDVal__MapAssertElem(map, me);
  1376. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1377. ASSERT(map_e->count > 0)
  1378. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  1379. ASSERT(me.elemidx <= last_elemidx)
  1380. if (me.elemidx == last_elemidx) {
  1381. return NCDVal__MapElem(-1);
  1382. }
  1383. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  1384. NCDVal__MapAssertElemOnly(map, elemidx);
  1385. return NCDVal__MapElem(elemidx);
  1386. }
  1387. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  1388. {
  1389. ASSERT(NCDVal_IsMap(map))
  1390. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1391. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  1392. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1393. return NCDVal__MapElem(ref.link);
  1394. }
  1395. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  1396. {
  1397. NCDVal__MapAssertElem(map, me);
  1398. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1399. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  1400. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1401. return NCDVal__MapElem(ref.link);
  1402. }
  1403. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  1404. {
  1405. NCDVal__MapAssertElem(map, me);
  1406. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1407. return NCDVal__Ref(map.mem, me_e->key_idx);
  1408. }
  1409. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  1410. {
  1411. NCDVal__MapAssertElem(map, me);
  1412. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1413. return NCDVal__Ref(map.mem, me_e->val_idx);
  1414. }
  1415. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  1416. {
  1417. ASSERT(NCDVal_IsMap(map))
  1418. NCDVal__AssertVal(key);
  1419. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1420. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  1421. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1422. return NCDVal__MapElem(ref.link);
  1423. }
  1424. NCDValRef NCDVal_MapGetValue (NCDValRef map, const char *key_str)
  1425. {
  1426. ASSERT(NCDVal_IsMap(map))
  1427. ASSERT(key_str)
  1428. NCDValMem mem;
  1429. mem.buf = NULL;
  1430. mem.size = NCDVAL_FASTBUF_SIZE;
  1431. mem.used = sizeof(struct NCDVal__externalstring);
  1432. mem.first_ref = -1;
  1433. struct NCDVal__externalstring *exs_e = (void *)mem.fastbuf;
  1434. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  1435. exs_e->data = key_str;
  1436. exs_e->length = strlen(key_str);
  1437. exs_e->ref.target = NULL;
  1438. NCDValRef key = NCDVal__Ref(&mem, 0);
  1439. NCDValMapElem elem = NCDVal_MapFindKey(map, key);
  1440. if (NCDVal_MapElemInvalid(elem)) {
  1441. return NCDVal_NewInvalid();
  1442. }
  1443. return NCDVal_MapElemVal(map, elem);
  1444. }
  1445. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  1446. {
  1447. ASSERT(idx >= 0)
  1448. NCDVal__AssertValOnly(mem, idx);
  1449. ASSERT(out_num_instr)
  1450. *out_num_instr = 0;
  1451. void *ptr = NCDValMem__BufAt(mem, idx);
  1452. struct NCDVal__instr instr;
  1453. switch (get_internal_type(*((int *)(ptr)))) {
  1454. case STOREDSTRING_TYPE:
  1455. case IDSTRING_TYPE:
  1456. case EXTERNALSTRING_TYPE:
  1457. case COMPOSEDSTRING_TYPE: {
  1458. } break;
  1459. case NCDVAL_LIST: {
  1460. struct NCDVal__list *list_e = ptr;
  1461. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  1462. int elem_changed = 0;
  1463. if (list_e->elem_indices[i] < -1) {
  1464. if (prog) {
  1465. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1466. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  1467. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1468. prog->instrs[prog->num_instrs++] = instr;
  1469. }
  1470. (*out_num_instr)++;
  1471. elem_changed = 1;
  1472. } else {
  1473. size_t elem_num_instr;
  1474. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  1475. (*out_num_instr) += elem_num_instr;
  1476. if (elem_num_instr > 0) {
  1477. elem_changed = 1;
  1478. }
  1479. }
  1480. if (elem_changed) {
  1481. if (prog) {
  1482. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1483. instr.bumpdepth.parent_idx = idx;
  1484. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1485. prog->instrs[prog->num_instrs++] = instr;
  1486. }
  1487. (*out_num_instr)++;
  1488. }
  1489. }
  1490. } break;
  1491. case NCDVAL_MAP: {
  1492. struct NCDVal__map *map_e = ptr;
  1493. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  1494. int key_changed = 0;
  1495. int val_changed = 0;
  1496. if (map_e->elems[i].key_idx < -1) {
  1497. if (prog) {
  1498. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1499. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  1500. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1501. prog->instrs[prog->num_instrs++] = instr;
  1502. }
  1503. (*out_num_instr)++;
  1504. key_changed = 1;
  1505. } else {
  1506. size_t key_num_instr;
  1507. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  1508. (*out_num_instr) += key_num_instr;
  1509. if (key_num_instr > 0) {
  1510. key_changed = 1;
  1511. }
  1512. }
  1513. if (map_e->elems[i].val_idx < -1) {
  1514. if (prog) {
  1515. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1516. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  1517. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1518. prog->instrs[prog->num_instrs++] = instr;
  1519. }
  1520. (*out_num_instr)++;
  1521. val_changed = 1;
  1522. } else {
  1523. size_t val_num_instr;
  1524. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  1525. (*out_num_instr) += val_num_instr;
  1526. if (val_num_instr > 0) {
  1527. val_changed = 1;
  1528. }
  1529. }
  1530. if (key_changed) {
  1531. if (prog) {
  1532. instr.type = NCDVAL_INSTR_REINSERT;
  1533. instr.reinsert.mapidx = idx;
  1534. instr.reinsert.elempos = i;
  1535. prog->instrs[prog->num_instrs++] = instr;
  1536. }
  1537. (*out_num_instr)++;
  1538. if (prog) {
  1539. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1540. instr.bumpdepth.parent_idx = idx;
  1541. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1542. prog->instrs[prog->num_instrs++] = instr;
  1543. }
  1544. (*out_num_instr)++;
  1545. }
  1546. if (val_changed) {
  1547. if (prog) {
  1548. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1549. instr.bumpdepth.parent_idx = idx;
  1550. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1551. prog->instrs[prog->num_instrs++] = instr;
  1552. }
  1553. (*out_num_instr)++;
  1554. }
  1555. }
  1556. } break;
  1557. default: ASSERT(0);
  1558. }
  1559. }
  1560. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  1561. {
  1562. NCDVal__AssertVal(val);
  1563. ASSERT(!NCDVal_IsPlaceholder(val))
  1564. size_t num_instrs;
  1565. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  1566. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  1567. BLog(BLOG_ERROR, "BAllocArray failed");
  1568. return 0;
  1569. }
  1570. o->num_instrs = 0;
  1571. size_t num_instrs2;
  1572. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  1573. ASSERT(num_instrs2 == num_instrs)
  1574. ASSERT(o->num_instrs == num_instrs)
  1575. return 1;
  1576. }
  1577. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  1578. {
  1579. BFree(o->instrs);
  1580. }
  1581. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  1582. {
  1583. NCDVal__AssertMem(mem);
  1584. ASSERT(replace)
  1585. for (size_t i = 0; i < prog.num_instrs; i++) {
  1586. struct NCDVal__instr instr = prog.instrs[i];
  1587. switch (instr.type) {
  1588. case NCDVAL_INSTR_PLACEHOLDER: {
  1589. #ifndef NDEBUG
  1590. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1591. ASSERT(*check_plptr < -1)
  1592. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  1593. #endif
  1594. NCDValRef repval;
  1595. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  1596. return 0;
  1597. }
  1598. ASSERT(repval.mem == mem)
  1599. if (NCDValMem__NeedRegisterLink(mem, repval.idx)) {
  1600. NCDValMem__RegisterLink(mem, repval.idx, instr.placeholder.plidx);
  1601. }
  1602. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1603. *plptr = repval.idx;
  1604. } break;
  1605. case NCDVAL_INSTR_REINSERT: {
  1606. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  1607. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  1608. ASSERT(map_e->type == NCDVAL_MAP)
  1609. ASSERT(instr.reinsert.elempos >= 0)
  1610. ASSERT(instr.reinsert.elempos < map_e->count)
  1611. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  1612. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  1613. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  1614. BLog(BLOG_ERROR, "duplicate key in map");
  1615. return 0;
  1616. }
  1617. } break;
  1618. case NCDVAL_INSTR_BUMPDEPTH: {
  1619. NCDVal__AssertValOnly(mem, instr.bumpdepth.parent_idx);
  1620. int *parent_type_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.parent_idx);
  1621. NCDVal__idx *child_type_idx_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.child_idx_idx);
  1622. NCDVal__AssertValOnly(mem, *child_type_idx_ptr);
  1623. int *child_type_ptr = NCDValMem__BufAt(mem, *child_type_idx_ptr);
  1624. if (!bump_depth(parent_type_ptr, get_depth(*child_type_ptr))) {
  1625. BLog(BLOG_ERROR, "depth limit exceeded");
  1626. return 0;
  1627. }
  1628. } break;
  1629. default: ASSERT(0);
  1630. }
  1631. }
  1632. return 1;
  1633. }