NCDVal.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/bsize.h>
  35. #include "NCDVal.h"
  36. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  37. {
  38. ASSERT(idx < o->used)
  39. return (o->buf ? o->buf : o->fastbuf) + idx;
  40. }
  41. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, bsize_t alloc_size, NCDVal__idx align)
  42. {
  43. if (alloc_size.is_overflow) {
  44. return -1;
  45. }
  46. NCDVal__idx mod = o->used % align;
  47. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  48. if (alloc_size.value > NCDVAL_MAXIDX - align_extra) {
  49. return -1;
  50. }
  51. NCDVal__idx aligned_alloc_size = align_extra + alloc_size.value;
  52. if (aligned_alloc_size > o->size - o->used) {
  53. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  54. while (aligned_alloc_size > newsize - o->used) {
  55. if (newsize > NCDVAL_MAXIDX / 2) {
  56. return -1;
  57. }
  58. newsize *= 2;
  59. }
  60. char *newbuf;
  61. if (!o->buf) {
  62. newbuf = malloc(newsize);
  63. if (!newbuf) {
  64. return -1;
  65. }
  66. memcpy(newbuf, o->fastbuf, o->used);
  67. } else {
  68. newbuf = realloc(o->buf, newsize);
  69. if (!newbuf) {
  70. return -1;
  71. }
  72. }
  73. o->buf = newbuf;
  74. o->size = newsize;
  75. }
  76. NCDVal__idx idx = o->used + align_extra;
  77. o->used += aligned_alloc_size;
  78. return idx;
  79. }
  80. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  81. {
  82. ASSERT(idx >= 0 || idx == -1)
  83. ASSERT(idx == -1 || mem)
  84. NCDValRef ref = {mem, idx};
  85. return ref;
  86. }
  87. static void NCDVal__AssertMem (NCDValMem *mem)
  88. {
  89. ASSERT(mem)
  90. ASSERT(mem->size >= 0)
  91. ASSERT(mem->used >= 0)
  92. ASSERT(mem->used <= mem->size)
  93. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  94. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  95. }
  96. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  97. {
  98. const char *e_cbuf = e_buf;
  99. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  100. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  101. }
  102. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  103. {
  104. ASSERT(idx >= 0)
  105. ASSERT(idx + sizeof(int) <= mem->used)
  106. #ifndef NDEBUG
  107. int *type_ptr = NCDValMem__BufAt(mem, idx);
  108. switch (*type_ptr) {
  109. case NCDVAL_STRING: {
  110. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  111. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  112. ASSERT(str_e->length >= 0)
  113. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  114. } break;
  115. case NCDVAL_LIST: {
  116. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  117. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  118. ASSERT(list_e->maxcount >= 0)
  119. ASSERT(list_e->count >= 0)
  120. ASSERT(list_e->count <= list_e->maxcount)
  121. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  122. } break;
  123. case NCDVAL_MAP: {
  124. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  125. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  126. ASSERT(map_e->maxcount >= 0)
  127. ASSERT(map_e->count >= 0)
  128. ASSERT(map_e->count <= map_e->maxcount)
  129. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  130. } break;
  131. default: ASSERT(0);
  132. }
  133. #endif
  134. }
  135. static void NCDVal__AssertVal (NCDValRef val)
  136. {
  137. NCDVal__AssertMem(val.mem);
  138. NCDVal__AssertValOnly(val.mem, val.idx);
  139. }
  140. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  141. {
  142. ASSERT(elemidx >= 0 || elemidx == -1)
  143. NCDValMapElem me = {elemidx};
  144. return me;
  145. }
  146. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  147. {
  148. #ifndef NDEBUG
  149. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  150. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  151. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  152. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  153. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  154. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  155. #endif
  156. }
  157. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  158. {
  159. ASSERT(NCDVal_IsMap(map))
  160. NCDVal__MapAssertElemOnly(map, me.elemidx);
  161. }
  162. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  163. {
  164. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  165. }
  166. #include "NCDVal_maptree.h"
  167. #include <structure/CAvl_impl.h>
  168. void NCDValMem_Init (NCDValMem *o)
  169. {
  170. o->buf = NULL;
  171. o->size = NCDVAL_FASTBUF_SIZE;
  172. o->used = 0;
  173. }
  174. void NCDValMem_Free (NCDValMem *o)
  175. {
  176. free(o->buf);
  177. }
  178. void NCDVal_Assert (NCDValRef val)
  179. {
  180. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  181. }
  182. int NCDVal_IsInvalid (NCDValRef val)
  183. {
  184. NCDVal_Assert(val);
  185. return val.idx < 0;
  186. }
  187. int NCDVal_Type (NCDValRef val)
  188. {
  189. NCDVal__AssertVal(val);
  190. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  191. return *type_ptr;
  192. }
  193. NCDValRef NCDVal_NewInvalid (void)
  194. {
  195. NCDValRef ref = {NULL, -1};
  196. return ref;
  197. }
  198. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  199. {
  200. NCDVal__AssertMem(mem);
  201. NCDVal__AssertVal(val);
  202. switch (NCDVal_Type(val)) {
  203. case NCDVAL_STRING: {
  204. size_t len = NCDVal_StringLength(val);
  205. NCDValRef copy = NCDVal_NewStringUninitialized(mem, len);
  206. if (NCDVal_IsInvalid(copy)) {
  207. goto fail;
  208. }
  209. memcpy((char *)NCDVal_StringValue(copy), NCDVal_StringValue(val), len);
  210. return copy;
  211. } break;
  212. case NCDVAL_LIST: {
  213. size_t count = NCDVal_ListCount(val);
  214. NCDValRef copy = NCDVal_NewList(mem, count);
  215. if (NCDVal_IsInvalid(copy)) {
  216. goto fail;
  217. }
  218. for (size_t i = 0; i < count; i++) {
  219. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal_ListGet(val, i));
  220. if (NCDVal_IsInvalid(elem_copy)) {
  221. goto fail;
  222. }
  223. NCDVal_ListAppend(copy, elem_copy);
  224. }
  225. return copy;
  226. } break;
  227. case NCDVAL_MAP: {
  228. size_t count = NCDVal_MapCount(val);
  229. NCDValRef copy = NCDVal_NewMap(mem, count);
  230. if (NCDVal_IsInvalid(copy)) {
  231. goto fail;
  232. }
  233. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  234. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  235. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  236. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  237. goto fail;
  238. }
  239. int res = NCDVal_MapInsert(copy, key_copy, val_copy);
  240. ASSERT(res)
  241. }
  242. return copy;
  243. } break;
  244. default: ASSERT(0);
  245. }
  246. ASSERT(0);
  247. fail:
  248. return NCDVal_NewInvalid();
  249. }
  250. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  251. {
  252. NCDVal__AssertVal(val1);
  253. NCDVal__AssertVal(val2);
  254. int type1 = NCDVal_Type(val1);
  255. int type2 = NCDVal_Type(val2);
  256. if (type1 != type2) {
  257. return (type1 > type2) - (type1 < type2);
  258. }
  259. switch (type1) {
  260. case NCDVAL_STRING: {
  261. size_t len1 = NCDVal_StringLength(val1);
  262. size_t len2 = NCDVal_StringLength(val2);
  263. size_t min_len = len1 < len2 ? len1 : len2;
  264. int cmp = memcmp(NCDVal_StringValue(val1), NCDVal_StringValue(val2), min_len);
  265. if (cmp) {
  266. return (cmp > 0) - (cmp < 0);
  267. }
  268. return (len1 > len2) - (len1 < len2);
  269. } break;
  270. case NCDVAL_LIST: {
  271. size_t count1 = NCDVal_ListCount(val1);
  272. size_t count2 = NCDVal_ListCount(val2);
  273. size_t min_count = count1 < count2 ? count1 : count2;
  274. for (size_t i = 0; i < min_count; i++) {
  275. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  276. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  277. int cmp = NCDVal_Compare(ev1, ev2);
  278. if (cmp) {
  279. return cmp;
  280. }
  281. }
  282. return (count1 > count2) - (count1 < count2);
  283. } break;
  284. case NCDVAL_MAP: {
  285. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  286. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  287. while (1) {
  288. int inv1 = NCDVal_MapElemInvalid(e1);
  289. int inv2 = NCDVal_MapElemInvalid(e2);
  290. if (inv1 || inv2) {
  291. return inv2 - inv1;
  292. }
  293. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  294. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  295. int cmp = NCDVal_Compare(key1, key2);
  296. if (cmp) {
  297. return cmp;
  298. }
  299. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  300. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  301. cmp = NCDVal_Compare(value1, value2);
  302. if (cmp) {
  303. return cmp;
  304. }
  305. e1 = NCDVal_MapOrderedNext(val1, e1);
  306. e2 = NCDVal_MapOrderedNext(val2, e2);
  307. }
  308. } break;
  309. default:
  310. ASSERT(0);
  311. return 0;
  312. }
  313. }
  314. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  315. {
  316. NCDVal_Assert(val);
  317. NCDValSafeRef sval = {val.idx};
  318. return sval;
  319. }
  320. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  321. {
  322. NCDVal__AssertMem(mem);
  323. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  324. NCDValRef val = {mem, sval.idx};
  325. return val;
  326. }
  327. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  328. {
  329. NCDVal__AssertMem(mem);
  330. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  331. NCDValRef val2 = {mem, val.idx};
  332. return val2;
  333. }
  334. int NCDVal_IsString (NCDValRef val)
  335. {
  336. NCDVal__AssertVal(val);
  337. return NCDVal_Type(val) == NCDVAL_STRING;
  338. }
  339. int NCDVal_IsStringNoNulls (NCDValRef val)
  340. {
  341. NCDVal__AssertVal(val);
  342. return NCDVal_Type(val) == NCDVAL_STRING && strlen(NCDVal_StringValue(val)) == NCDVal_StringLength(val);
  343. }
  344. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  345. {
  346. NCDVal__AssertMem(mem);
  347. ASSERT(data)
  348. NCDVal_AssertExternal(mem, data, strlen(data));
  349. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  350. }
  351. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  352. {
  353. NCDVal__AssertMem(mem);
  354. ASSERT(len == 0 || data)
  355. NCDVal_AssertExternal(mem, data, len);
  356. if (len == SIZE_MAX) {
  357. goto fail;
  358. }
  359. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  360. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  361. if (idx < 0) {
  362. goto fail;
  363. }
  364. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  365. str_e->type = NCDVAL_STRING;
  366. str_e->length = len;
  367. if (len > 0) {
  368. memcpy(str_e->data, data, len);
  369. }
  370. str_e->data[len] = '\0';
  371. return NCDVal__Ref(mem, idx);
  372. fail:
  373. return NCDVal_NewInvalid();
  374. }
  375. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  376. {
  377. NCDVal__AssertMem(mem);
  378. if (len == SIZE_MAX) {
  379. goto fail;
  380. }
  381. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  382. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  383. if (idx < 0) {
  384. goto fail;
  385. }
  386. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  387. str_e->type = NCDVAL_STRING;
  388. str_e->length = len;
  389. str_e->data[len] = '\0';
  390. return NCDVal__Ref(mem, idx);
  391. fail:
  392. return NCDVal_NewInvalid();
  393. }
  394. const char * NCDVal_StringValue (NCDValRef string)
  395. {
  396. ASSERT(NCDVal_IsString(string))
  397. struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx);
  398. return str_e->data;
  399. }
  400. size_t NCDVal_StringLength (NCDValRef string)
  401. {
  402. ASSERT(NCDVal_IsString(string))
  403. struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx);
  404. return str_e->length;
  405. }
  406. int NCDVal_StringHasNulls (NCDValRef string)
  407. {
  408. ASSERT(NCDVal_IsString(string))
  409. return strlen(NCDVal_StringValue(string)) != NCDVal_StringLength(string);
  410. }
  411. int NCDVal_StringEquals (NCDValRef string, const char *data)
  412. {
  413. ASSERT(NCDVal_IsString(string))
  414. ASSERT(data)
  415. return !NCDVal_StringHasNulls(string) && !strcmp(NCDVal_StringValue(string), data);
  416. }
  417. int NCDVal_IsList (NCDValRef val)
  418. {
  419. NCDVal__AssertVal(val);
  420. return NCDVal_Type(val) == NCDVAL_LIST;
  421. }
  422. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  423. {
  424. NCDVal__AssertMem(mem);
  425. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__list)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(NCDVal__idx))));
  426. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  427. if (idx < 0) {
  428. goto fail;
  429. }
  430. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  431. list_e->type = NCDVAL_LIST;
  432. list_e->maxcount = maxcount;
  433. list_e->count = 0;
  434. return NCDVal__Ref(mem, idx);
  435. fail:
  436. return NCDVal_NewInvalid();
  437. }
  438. void NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  439. {
  440. ASSERT(NCDVal_IsList(list))
  441. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  442. ASSERT(elem.mem == list.mem)
  443. NCDVal__AssertValOnly(list.mem, elem.idx);
  444. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  445. list_e->elem_indices[list_e->count++] = elem.idx;
  446. }
  447. size_t NCDVal_ListCount (NCDValRef list)
  448. {
  449. ASSERT(NCDVal_IsList(list))
  450. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  451. return list_e->count;
  452. }
  453. size_t NCDVal_ListMaxCount (NCDValRef list)
  454. {
  455. ASSERT(NCDVal_IsList(list))
  456. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  457. return list_e->maxcount;
  458. }
  459. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  460. {
  461. ASSERT(NCDVal_IsList(list))
  462. ASSERT(pos < NCDVal_ListCount(list))
  463. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  464. ASSERT(pos < list_e->count)
  465. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  466. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  467. }
  468. int NCDVal_ListRead (NCDValRef list, int num, ...)
  469. {
  470. ASSERT(NCDVal_IsList(list))
  471. ASSERT(num >= 0)
  472. size_t count = NCDVal_ListCount(list);
  473. if (num != count) {
  474. return 0;
  475. }
  476. va_list ap;
  477. va_start(ap, num);
  478. for (int i = 0; i < num; i++) {
  479. NCDValRef *dest = va_arg(ap, NCDValRef *);
  480. *dest = NCDVal_ListGet(list, i);
  481. }
  482. va_end(ap);
  483. return 1;
  484. }
  485. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  486. {
  487. ASSERT(NCDVal_IsList(list))
  488. ASSERT(num >= 0)
  489. size_t count = NCDVal_ListCount(list);
  490. if (num > count) {
  491. return 0;
  492. }
  493. va_list ap;
  494. va_start(ap, num);
  495. for (int i = 0; i < num; i++) {
  496. NCDValRef *dest = va_arg(ap, NCDValRef *);
  497. *dest = NCDVal_ListGet(list, i);
  498. }
  499. va_end(ap);
  500. return 1;
  501. }
  502. int NCDVal_IsMap (NCDValRef val)
  503. {
  504. NCDVal__AssertVal(val);
  505. return NCDVal_Type(val) == NCDVAL_MAP;
  506. }
  507. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  508. {
  509. NCDVal__AssertMem(mem);
  510. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__map)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(struct NCDVal__mapelem))));
  511. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  512. if (idx < 0) {
  513. goto fail;
  514. }
  515. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  516. map_e->type = NCDVAL_MAP;
  517. map_e->maxcount = maxcount;
  518. map_e->count = 0;
  519. NCDVal__MapTree_Init(&map_e->tree);
  520. return NCDVal__Ref(mem, idx);
  521. fail:
  522. return NCDVal_NewInvalid();
  523. }
  524. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val)
  525. {
  526. ASSERT(NCDVal_IsMap(map))
  527. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  528. ASSERT(key.mem == map.mem)
  529. ASSERT(val.mem == map.mem)
  530. NCDVal__AssertValOnly(map.mem, key.idx);
  531. NCDVal__AssertValOnly(map.mem, val.idx);
  532. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  533. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  534. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  535. ASSERT(me_e == &map_e->elems[map_e->count])
  536. me_e->key_idx = key.idx;
  537. me_e->val_idx = val.idx;
  538. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  539. if (!res) {
  540. return 0;
  541. }
  542. map_e->count++;
  543. return 1;
  544. }
  545. size_t NCDVal_MapCount (NCDValRef map)
  546. {
  547. ASSERT(NCDVal_IsMap(map))
  548. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  549. return map_e->count;
  550. }
  551. size_t NCDVal_MapMaxCount (NCDValRef map)
  552. {
  553. ASSERT(NCDVal_IsMap(map))
  554. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  555. return map_e->maxcount;
  556. }
  557. int NCDVal_MapElemInvalid (NCDValMapElem me)
  558. {
  559. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  560. return me.elemidx < 0;
  561. }
  562. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  563. {
  564. ASSERT(NCDVal_IsMap(map))
  565. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  566. if (map_e->count == 0) {
  567. return NCDVal__MapElem(-1);
  568. }
  569. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  570. NCDVal__MapAssertElemOnly(map, elemidx);
  571. return NCDVal__MapElem(elemidx);
  572. }
  573. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  574. {
  575. NCDVal__MapAssertElem(map, me);
  576. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  577. ASSERT(map_e->count > 0)
  578. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  579. ASSERT(me.elemidx <= last_elemidx)
  580. if (me.elemidx == last_elemidx) {
  581. return NCDVal__MapElem(-1);
  582. }
  583. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  584. NCDVal__MapAssertElemOnly(map, elemidx);
  585. return NCDVal__MapElem(elemidx);
  586. }
  587. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  588. {
  589. ASSERT(NCDVal_IsMap(map))
  590. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  591. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  592. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  593. return NCDVal__MapElem(ref.link);
  594. }
  595. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  596. {
  597. NCDVal__MapAssertElem(map, me);
  598. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  599. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  600. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  601. return NCDVal__MapElem(ref.link);
  602. }
  603. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  604. {
  605. NCDVal__MapAssertElem(map, me);
  606. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  607. return NCDVal__Ref(map.mem, me_e->key_idx);
  608. }
  609. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  610. {
  611. NCDVal__MapAssertElem(map, me);
  612. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  613. return NCDVal__Ref(map.mem, me_e->val_idx);
  614. }
  615. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  616. {
  617. ASSERT(NCDVal_IsMap(map))
  618. NCDVal__AssertVal(key);
  619. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  620. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  621. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  622. return NCDVal__MapElem(ref.link);
  623. }