NCDVal.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/balloc.h>
  35. #include <misc/strdup.h>
  36. #include <misc/offset.h>
  37. #include <structure/CAvl.h>
  38. #include <base/BLog.h>
  39. #include "NCDVal.h"
  40. #include <generated/blog_channel_NCDVal.h>
  41. #define NCDVAL_FIRST_SIZE 256
  42. #define NCDVAL_MAX_DEPTH 32
  43. #define TYPE_MASK_EXTERNAL_TYPE ((1 << 3) - 1)
  44. #define TYPE_MASK_INTERNAL_TYPE ((1 << 5) - 1)
  45. #define TYPE_SHIFT_DEPTH 5
  46. #define STOREDSTRING_TYPE (NCDVAL_STRING | (0 << 3))
  47. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  48. #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3))
  49. #define NCDVAL_INSTR_PLACEHOLDER 0
  50. #define NCDVAL_INSTR_REINSERT 1
  51. #define NCDVAL_INSTR_BUMPDEPTH 2
  52. struct NCDVal__ref {
  53. NCDVal__idx next;
  54. BRefTarget *target;
  55. };
  56. struct NCDVal__string {
  57. int type;
  58. NCDVal__idx length;
  59. char data[];
  60. };
  61. struct NCDVal__list {
  62. int type;
  63. NCDVal__idx maxcount;
  64. NCDVal__idx count;
  65. NCDVal__idx elem_indices[];
  66. };
  67. struct NCDVal__mapelem {
  68. NCDVal__idx key_idx;
  69. NCDVal__idx val_idx;
  70. NCDVal__idx tree_child[2];
  71. NCDVal__idx tree_parent;
  72. int8_t tree_balance;
  73. };
  74. struct NCDVal__idstring {
  75. int type;
  76. NCD_string_id_t string_id;
  77. };
  78. struct NCDVal__externalstring {
  79. int type;
  80. const char *data;
  81. size_t length;
  82. struct NCDVal__ref ref;
  83. };
  84. typedef struct NCDVal__mapelem NCDVal__maptree_entry;
  85. typedef NCDValMem *NCDVal__maptree_arg;
  86. #include "NCDVal_maptree.h"
  87. #include <structure/CAvl_decl.h>
  88. struct NCDVal__map {
  89. int type;
  90. NCDVal__idx maxcount;
  91. NCDVal__idx count;
  92. NCDVal__MapTree tree;
  93. struct NCDVal__mapelem elems[];
  94. };
  95. struct NCDVal__instr {
  96. int type;
  97. union {
  98. struct {
  99. NCDVal__idx plid;
  100. NCDVal__idx plidx;
  101. } placeholder;
  102. struct {
  103. NCDVal__idx mapidx;
  104. NCDVal__idx elempos;
  105. } reinsert;
  106. struct {
  107. NCDVal__idx parent_idx;
  108. NCDVal__idx child_idx_idx;
  109. } bumpdepth;
  110. };
  111. };
  112. static int make_type (int internal_type, int depth)
  113. {
  114. ASSERT(internal_type == NCDVAL_LIST ||
  115. internal_type == NCDVAL_MAP ||
  116. internal_type == STOREDSTRING_TYPE ||
  117. internal_type == IDSTRING_TYPE ||
  118. internal_type == EXTERNALSTRING_TYPE)
  119. ASSERT(depth >= 0)
  120. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  121. return (internal_type | (depth << TYPE_SHIFT_DEPTH));
  122. }
  123. static int get_external_type (int type)
  124. {
  125. return (type & TYPE_MASK_EXTERNAL_TYPE);
  126. }
  127. static int get_internal_type (int type)
  128. {
  129. return (type & TYPE_MASK_INTERNAL_TYPE);
  130. }
  131. static int get_depth (int type)
  132. {
  133. return (type >> TYPE_SHIFT_DEPTH);
  134. }
  135. static int bump_depth (int *type_ptr, int elem_depth)
  136. {
  137. if (get_depth(*type_ptr) < elem_depth + 1) {
  138. if (elem_depth + 1 > NCDVAL_MAX_DEPTH) {
  139. return 0;
  140. }
  141. *type_ptr = make_type(get_internal_type(*type_ptr), elem_depth + 1);
  142. }
  143. return 1;
  144. }
  145. static void * buffer_at (NCDValMem *o, NCDVal__idx idx)
  146. {
  147. ASSERT(idx >= 0)
  148. ASSERT(idx < o->used)
  149. return ((o->size == NCDVAL_FASTBUF_SIZE) ? o->fastbuf : o->allocd_buf) + idx;
  150. }
  151. static NCDVal__idx buffer_allocate (NCDValMem *o, NCDVal__idx alloc_size, NCDVal__idx align)
  152. {
  153. NCDVal__idx mod = o->used % align;
  154. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  155. if (alloc_size > NCDVAL_MAXIDX - align_extra) {
  156. return -1;
  157. }
  158. NCDVal__idx aligned_alloc_size = align_extra + alloc_size;
  159. if (aligned_alloc_size > o->size - o->used) {
  160. NCDVal__idx newsize = (o->size == NCDVAL_FASTBUF_SIZE) ? NCDVAL_FIRST_SIZE : o->size;
  161. while (aligned_alloc_size > newsize - o->used) {
  162. if (newsize > NCDVAL_MAXIDX / 2) {
  163. return -1;
  164. }
  165. newsize *= 2;
  166. }
  167. char *newbuf;
  168. if (o->size == NCDVAL_FASTBUF_SIZE) {
  169. newbuf = malloc(newsize);
  170. if (!newbuf) {
  171. return -1;
  172. }
  173. memcpy(newbuf, o->fastbuf, o->used);
  174. } else {
  175. newbuf = realloc(o->allocd_buf, newsize);
  176. if (!newbuf) {
  177. return -1;
  178. }
  179. }
  180. o->size = newsize;
  181. o->allocd_buf = newbuf;
  182. }
  183. NCDVal__idx idx = o->used + align_extra;
  184. o->used += aligned_alloc_size;
  185. return idx;
  186. }
  187. static NCDValRef make_ref (NCDValMem *mem, NCDVal__idx idx)
  188. {
  189. ASSERT(idx == -1 || mem)
  190. NCDValRef ref = {mem, idx};
  191. return ref;
  192. }
  193. static void assert_mem (NCDValMem *mem)
  194. {
  195. ASSERT(mem)
  196. ASSERT(mem->string_index)
  197. ASSERT(mem->size == NCDVAL_FASTBUF_SIZE || mem->size >= NCDVAL_FIRST_SIZE)
  198. ASSERT(mem->used >= 0)
  199. ASSERT(mem->used <= mem->size)
  200. }
  201. static void assert_external (NCDValMem *mem, const void *e_buf, size_t e_len)
  202. {
  203. #ifndef NDEBUG
  204. const char *e_cbuf = e_buf;
  205. char *buf = (mem->size == NCDVAL_FASTBUF_SIZE) ? mem->fastbuf : mem->allocd_buf;
  206. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  207. #endif
  208. }
  209. static void assert_val_only (NCDValMem *mem, NCDVal__idx idx)
  210. {
  211. // placeholders
  212. if (idx < -1) {
  213. return;
  214. }
  215. ASSERT(idx >= 0)
  216. ASSERT(idx + sizeof(int) <= mem->used)
  217. #ifndef NDEBUG
  218. int *type_ptr = buffer_at(mem, idx);
  219. ASSERT(get_depth(*type_ptr) >= 0)
  220. ASSERT(get_depth(*type_ptr) <= NCDVAL_MAX_DEPTH)
  221. switch (get_internal_type(*type_ptr)) {
  222. case STOREDSTRING_TYPE: {
  223. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  224. struct NCDVal__string *str_e = buffer_at(mem, idx);
  225. ASSERT(str_e->length >= 0)
  226. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  227. } break;
  228. case NCDVAL_LIST: {
  229. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  230. struct NCDVal__list *list_e = buffer_at(mem, idx);
  231. ASSERT(list_e->maxcount >= 0)
  232. ASSERT(list_e->count >= 0)
  233. ASSERT(list_e->count <= list_e->maxcount)
  234. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  235. } break;
  236. case NCDVAL_MAP: {
  237. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  238. struct NCDVal__map *map_e = buffer_at(mem, idx);
  239. ASSERT(map_e->maxcount >= 0)
  240. ASSERT(map_e->count >= 0)
  241. ASSERT(map_e->count <= map_e->maxcount)
  242. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  243. } break;
  244. case IDSTRING_TYPE: {
  245. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  246. struct NCDVal__idstring *ids_e = buffer_at(mem, idx);
  247. ASSERT(ids_e->string_id >= 0)
  248. } break;
  249. case EXTERNALSTRING_TYPE: {
  250. ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used)
  251. struct NCDVal__externalstring *exs_e = buffer_at(mem, idx);
  252. ASSERT(exs_e->data)
  253. ASSERT(!exs_e->ref.target || exs_e->ref.next >= -1)
  254. ASSERT(!exs_e->ref.target || exs_e->ref.next < mem->used)
  255. } break;
  256. default: ASSERT(0);
  257. }
  258. #endif
  259. }
  260. static void assert_val (NCDValRef val)
  261. {
  262. assert_mem(val.mem);
  263. assert_val_only(val.mem, val.idx);
  264. }
  265. static NCDValMapElem make_map_elem (NCDVal__idx elemidx)
  266. {
  267. ASSERT(elemidx >= 0 || elemidx == -1)
  268. NCDValMapElem me = {elemidx};
  269. return me;
  270. }
  271. static void assert_map_elem_only (NCDValRef map, NCDVal__idx elemidx)
  272. {
  273. #ifndef NDEBUG
  274. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  275. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  276. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  277. struct NCDVal__mapelem *me_e = buffer_at(map.mem, elemidx);
  278. assert_val_only(map.mem, me_e->key_idx);
  279. assert_val_only(map.mem, me_e->val_idx);
  280. #endif
  281. }
  282. static void assert_map_elem (NCDValRef map, NCDValMapElem me)
  283. {
  284. ASSERT(NCDVal_IsMap(map))
  285. assert_map_elem_only(map, me.elemidx);
  286. }
  287. static NCDVal__idx make_map_elem_idx (NCDVal__idx mapidx, NCDVal__idx pos)
  288. {
  289. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  290. }
  291. static int get_val_depth (NCDValRef val)
  292. {
  293. ASSERT(val.idx != -1)
  294. // handle placeholders
  295. if (val.idx < 0) {
  296. return 0;
  297. }
  298. int *elem_type_ptr = buffer_at(val.mem, val.idx);
  299. int depth = get_depth(*elem_type_ptr);
  300. ASSERT(depth >= 0)
  301. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  302. return depth;
  303. }
  304. static void register_ref (NCDValMem *o, NCDVal__idx refidx, struct NCDVal__ref *ref)
  305. {
  306. ASSERT(ref == buffer_at(o, refidx))
  307. ASSERT(ref->target)
  308. ref->next = o->first_ref;
  309. o->first_ref = refidx;
  310. }
  311. #include "NCDVal_maptree.h"
  312. #include <structure/CAvl_impl.h>
  313. void NCDValMem_Init (NCDValMem *o, NCDStringIndex *string_index)
  314. {
  315. ASSERT(string_index)
  316. o->string_index = string_index;
  317. o->size = NCDVAL_FASTBUF_SIZE;
  318. o->used = 0;
  319. o->first_ref = -1;
  320. }
  321. void NCDValMem_Free (NCDValMem *o)
  322. {
  323. assert_mem(o);
  324. NCDVal__idx refidx = o->first_ref;
  325. while (refidx != -1) {
  326. struct NCDVal__ref *ref = buffer_at(o, refidx);
  327. ASSERT(ref->target)
  328. BRefTarget_Deref(ref->target);
  329. refidx = ref->next;
  330. }
  331. if (o->size != NCDVAL_FASTBUF_SIZE) {
  332. BFree(o->allocd_buf);
  333. }
  334. }
  335. int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other)
  336. {
  337. assert_mem(other);
  338. o->string_index = other->string_index;
  339. o->size = other->size;
  340. o->used = other->used;
  341. o->first_ref = other->first_ref;
  342. if (other->size == NCDVAL_FASTBUF_SIZE) {
  343. memcpy(o->fastbuf, other->fastbuf, other->used);
  344. } else {
  345. o->allocd_buf = BAlloc(other->size);
  346. if (!o->allocd_buf) {
  347. goto fail0;
  348. }
  349. memcpy(o->allocd_buf, other->allocd_buf, other->used);
  350. }
  351. NCDVal__idx refidx = o->first_ref;
  352. while (refidx != -1) {
  353. struct NCDVal__ref *ref = buffer_at(o, refidx);
  354. ASSERT(ref->target)
  355. if (!BRefTarget_Ref(ref->target)) {
  356. goto fail1;
  357. }
  358. refidx = ref->next;
  359. }
  360. return 1;
  361. fail1:;
  362. NCDVal__idx undo_refidx = o->first_ref;
  363. while (undo_refidx != refidx) {
  364. struct NCDVal__ref *ref = buffer_at(o, undo_refidx);
  365. BRefTarget_Deref(ref->target);
  366. undo_refidx = ref->next;
  367. }
  368. if (other->size != NCDVAL_FASTBUF_SIZE) {
  369. BFree(o->allocd_buf);
  370. }
  371. fail0:
  372. return 0;
  373. }
  374. NCDStringIndex * NCDValMem_StringIndex (NCDValMem *o)
  375. {
  376. assert_mem(o);
  377. return o->string_index;
  378. }
  379. void NCDVal_Assert (NCDValRef val)
  380. {
  381. ASSERT(val.idx == -1 || (assert_val(val), 1))
  382. }
  383. int NCDVal_IsInvalid (NCDValRef val)
  384. {
  385. NCDVal_Assert(val);
  386. return (val.idx == -1);
  387. }
  388. int NCDVal_IsPlaceholder (NCDValRef val)
  389. {
  390. NCDVal_Assert(val);
  391. return (val.idx < -1);
  392. }
  393. int NCDVal_Type (NCDValRef val)
  394. {
  395. assert_val(val);
  396. if (val.idx < -1) {
  397. return NCDVAL_PLACEHOLDER;
  398. }
  399. int *type_ptr = buffer_at(val.mem, val.idx);
  400. return get_external_type(*type_ptr);
  401. }
  402. NCDValRef NCDVal_NewInvalid (void)
  403. {
  404. NCDValRef ref = {NULL, -1};
  405. return ref;
  406. }
  407. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  408. {
  409. assert_mem(mem);
  410. ASSERT(plid >= 0)
  411. ASSERT(plid < NCDVAL_TOPPLID)
  412. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  413. return ref;
  414. }
  415. int NCDVal_PlaceholderId (NCDValRef val)
  416. {
  417. ASSERT(NCDVal_IsPlaceholder(val))
  418. return (val.idx - NCDVAL_MINIDX);
  419. }
  420. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  421. {
  422. assert_mem(mem);
  423. assert_val(val);
  424. if (val.idx < -1) {
  425. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  426. }
  427. void *ptr = buffer_at(val.mem, val.idx);
  428. switch (get_internal_type(*(int *)ptr)) {
  429. case STOREDSTRING_TYPE: {
  430. struct NCDVal__string *str_e = ptr;
  431. NCDVal__idx size = sizeof(struct NCDVal__string) + str_e->length + 1;
  432. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__string));
  433. if (idx < 0) {
  434. goto fail;
  435. }
  436. str_e = buffer_at(val.mem, val.idx);
  437. struct NCDVal__string *new_str_e = buffer_at(mem, idx);
  438. memcpy(new_str_e, str_e, size);
  439. return make_ref(mem, idx);
  440. } break;
  441. case NCDVAL_LIST: {
  442. struct NCDVal__list *list_e = ptr;
  443. NCDVal__idx size = sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx);
  444. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__list));
  445. if (idx < 0) {
  446. goto fail;
  447. }
  448. list_e = buffer_at(val.mem, val.idx);
  449. struct NCDVal__list *new_list_e = buffer_at(mem, idx);
  450. *new_list_e = *list_e;
  451. NCDVal__idx count = list_e->count;
  452. for (NCDVal__idx i = 0; i < count; i++) {
  453. NCDValRef elem_copy = NCDVal_NewCopy(mem, make_ref(val.mem, list_e->elem_indices[i]));
  454. if (NCDVal_IsInvalid(elem_copy)) {
  455. goto fail;
  456. }
  457. list_e = buffer_at(val.mem, val.idx);
  458. new_list_e = buffer_at(mem, idx);
  459. new_list_e->elem_indices[i] = elem_copy.idx;
  460. }
  461. return make_ref(mem, idx);
  462. } break;
  463. case NCDVAL_MAP: {
  464. size_t count = NCDVal_MapCount(val);
  465. NCDValRef copy = NCDVal_NewMap(mem, count);
  466. if (NCDVal_IsInvalid(copy)) {
  467. goto fail;
  468. }
  469. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  470. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  471. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  472. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  473. goto fail;
  474. }
  475. int inserted;
  476. if (!NCDVal_MapInsert(copy, key_copy, val_copy, &inserted)) {
  477. goto fail;
  478. }
  479. ASSERT_EXECUTE(inserted)
  480. }
  481. return copy;
  482. } break;
  483. case IDSTRING_TYPE: {
  484. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  485. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__idstring));
  486. if (idx < 0) {
  487. goto fail;
  488. }
  489. struct NCDVal__idstring *ids_e = buffer_at(val.mem, val.idx);
  490. struct NCDVal__idstring *new_ids_e = buffer_at(mem, idx);
  491. *new_ids_e = *ids_e;
  492. return make_ref(mem, idx);
  493. } break;
  494. case EXTERNALSTRING_TYPE: {
  495. struct NCDVal__externalstring *exs_e = ptr;
  496. return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target);
  497. } break;
  498. default: ASSERT(0);
  499. }
  500. ASSERT(0);
  501. fail:
  502. return NCDVal_NewInvalid();
  503. }
  504. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  505. {
  506. assert_val(val1);
  507. assert_val(val2);
  508. int type1 = NCDVal_Type(val1);
  509. int type2 = NCDVal_Type(val2);
  510. if (type1 != type2) {
  511. return (type1 > type2) - (type1 < type2);
  512. }
  513. switch (type1) {
  514. case NCDVAL_STRING: {
  515. size_t len1 = NCDVal_StringLength(val1);
  516. size_t len2 = NCDVal_StringLength(val2);
  517. size_t min_len = len1 < len2 ? len1 : len2;
  518. int cmp = NCDVal_StringMemCmp(val1, val2, 0, 0, min_len);
  519. if (cmp) {
  520. return (cmp > 0) - (cmp < 0);
  521. }
  522. return (len1 > len2) - (len1 < len2);
  523. } break;
  524. case NCDVAL_LIST: {
  525. size_t count1 = NCDVal_ListCount(val1);
  526. size_t count2 = NCDVal_ListCount(val2);
  527. size_t min_count = count1 < count2 ? count1 : count2;
  528. for (size_t i = 0; i < min_count; i++) {
  529. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  530. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  531. int cmp = NCDVal_Compare(ev1, ev2);
  532. if (cmp) {
  533. return cmp;
  534. }
  535. }
  536. return (count1 > count2) - (count1 < count2);
  537. } break;
  538. case NCDVAL_MAP: {
  539. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  540. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  541. while (1) {
  542. int inv1 = NCDVal_MapElemInvalid(e1);
  543. int inv2 = NCDVal_MapElemInvalid(e2);
  544. if (inv1 || inv2) {
  545. return inv2 - inv1;
  546. }
  547. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  548. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  549. int cmp = NCDVal_Compare(key1, key2);
  550. if (cmp) {
  551. return cmp;
  552. }
  553. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  554. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  555. cmp = NCDVal_Compare(value1, value2);
  556. if (cmp) {
  557. return cmp;
  558. }
  559. e1 = NCDVal_MapOrderedNext(val1, e1);
  560. e2 = NCDVal_MapOrderedNext(val2, e2);
  561. }
  562. } break;
  563. case NCDVAL_PLACEHOLDER: {
  564. int plid1 = NCDVal_PlaceholderId(val1);
  565. int plid2 = NCDVal_PlaceholderId(val2);
  566. return (plid1 > plid2) - (plid1 < plid2);
  567. } break;
  568. default:
  569. ASSERT(0);
  570. return 0;
  571. }
  572. }
  573. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  574. {
  575. NCDVal_Assert(val);
  576. NCDValSafeRef sval = {val.idx};
  577. return sval;
  578. }
  579. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  580. {
  581. assert_mem(mem);
  582. ASSERT(sval.idx == -1 || (assert_val_only(mem, sval.idx), 1))
  583. NCDValRef val = {mem, sval.idx};
  584. return val;
  585. }
  586. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  587. {
  588. assert_mem(mem);
  589. ASSERT(val.idx == -1 || (assert_val_only(mem, val.idx), 1))
  590. NCDValRef val2 = {mem, val.idx};
  591. return val2;
  592. }
  593. int NCDVal_IsSafeRefPlaceholder (NCDValSafeRef sval)
  594. {
  595. return (sval.idx < -1);
  596. }
  597. int NCDVal_GetSafeRefPlaceholderId (NCDValSafeRef sval)
  598. {
  599. ASSERT(NCDVal_IsSafeRefPlaceholder(sval))
  600. return (sval.idx - NCDVAL_MINIDX);
  601. }
  602. int NCDVal_IsString (NCDValRef val)
  603. {
  604. assert_val(val);
  605. return NCDVal_Type(val) == NCDVAL_STRING;
  606. }
  607. int NCDVal_IsStoredString (NCDValRef val)
  608. {
  609. assert_val(val);
  610. return !(val.idx < -1) && get_internal_type(*(int *)buffer_at(val.mem, val.idx)) == STOREDSTRING_TYPE;
  611. }
  612. int NCDVal_IsIdString (NCDValRef val)
  613. {
  614. assert_val(val);
  615. return !(val.idx < -1) && get_internal_type(*(int *)buffer_at(val.mem, val.idx)) == IDSTRING_TYPE;
  616. }
  617. int NCDVal_IsExternalString (NCDValRef val)
  618. {
  619. assert_val(val);
  620. return !(val.idx < -1) && get_internal_type(*(int *)buffer_at(val.mem, val.idx)) == EXTERNALSTRING_TYPE;
  621. }
  622. int NCDVal_IsStringNoNulls (NCDValRef val)
  623. {
  624. assert_val(val);
  625. return NCDVal_Type(val) == NCDVAL_STRING && !NCDVal_StringHasNulls(val);
  626. }
  627. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  628. {
  629. assert_mem(mem);
  630. ASSERT(data)
  631. assert_external(mem, data, strlen(data));
  632. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  633. }
  634. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  635. {
  636. assert_mem(mem);
  637. ASSERT(len == 0 || data)
  638. assert_external(mem, data, len);
  639. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  640. goto fail;
  641. }
  642. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  643. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__string));
  644. if (idx < 0) {
  645. goto fail;
  646. }
  647. struct NCDVal__string *str_e = buffer_at(mem, idx);
  648. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  649. str_e->length = len;
  650. if (len > 0) {
  651. memcpy(str_e->data, data, len);
  652. }
  653. str_e->data[len] = '\0';
  654. return make_ref(mem, idx);
  655. fail:
  656. return NCDVal_NewInvalid();
  657. }
  658. NCDValRef NCDVal_NewStringBinMr (NCDValMem *mem, MemRef data)
  659. {
  660. return NCDVal_NewStringBin(mem, (uint8_t const *)data.ptr, data.len);
  661. }
  662. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  663. {
  664. assert_mem(mem);
  665. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  666. goto fail;
  667. }
  668. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  669. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__string));
  670. if (idx < 0) {
  671. goto fail;
  672. }
  673. struct NCDVal__string *str_e = buffer_at(mem, idx);
  674. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  675. str_e->length = len;
  676. str_e->data[len] = '\0';
  677. return make_ref(mem, idx);
  678. fail:
  679. return NCDVal_NewInvalid();
  680. }
  681. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id)
  682. {
  683. assert_mem(mem);
  684. ASSERT(string_id >= 0)
  685. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  686. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__idstring));
  687. if (idx < 0) {
  688. goto fail;
  689. }
  690. struct NCDVal__idstring *ids_e = buffer_at(mem, idx);
  691. ids_e->type = make_type(IDSTRING_TYPE, 0);
  692. ids_e->string_id = string_id;
  693. return make_ref(mem, idx);
  694. fail:
  695. return NCDVal_NewInvalid();
  696. }
  697. NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len,
  698. BRefTarget *ref_target)
  699. {
  700. assert_mem(mem);
  701. ASSERT(data)
  702. assert_external(mem, data, len);
  703. NCDVal__idx size = sizeof(struct NCDVal__externalstring);
  704. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__externalstring));
  705. if (idx < 0) {
  706. goto fail;
  707. }
  708. if (ref_target) {
  709. if (!BRefTarget_Ref(ref_target)) {
  710. goto fail;
  711. }
  712. }
  713. struct NCDVal__externalstring *exs_e = buffer_at(mem, idx);
  714. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  715. exs_e->data = data;
  716. exs_e->length = len;
  717. exs_e->ref.target = ref_target;
  718. if (ref_target) {
  719. register_ref(mem, idx + offsetof(struct NCDVal__externalstring, ref), &exs_e->ref);
  720. }
  721. return make_ref(mem, idx);
  722. fail:
  723. return NCDVal_NewInvalid();
  724. }
  725. const char * NCDVal_StringData (NCDValRef string)
  726. {
  727. ASSERT(NCDVal_IsString(string))
  728. void *ptr = buffer_at(string.mem, string.idx);
  729. switch (get_internal_type(*(int *)ptr)) {
  730. case STOREDSTRING_TYPE: {
  731. struct NCDVal__string *str_e = ptr;
  732. return str_e->data;
  733. } break;
  734. case IDSTRING_TYPE: {
  735. struct NCDVal__idstring *ids_e = ptr;
  736. const char *value = NCDStringIndex_Value(string.mem->string_index, ids_e->string_id).ptr;
  737. return value;
  738. } break;
  739. case EXTERNALSTRING_TYPE: {
  740. struct NCDVal__externalstring *exs_e = ptr;
  741. return exs_e->data;
  742. } break;
  743. default:
  744. ASSERT(0);
  745. return NULL;
  746. }
  747. }
  748. size_t NCDVal_StringLength (NCDValRef string)
  749. {
  750. ASSERT(NCDVal_IsString(string))
  751. void *ptr = buffer_at(string.mem, string.idx);
  752. switch (get_internal_type(*(int *)ptr)) {
  753. case STOREDSTRING_TYPE: {
  754. struct NCDVal__string *str_e = ptr;
  755. return str_e->length;
  756. } break;
  757. case IDSTRING_TYPE: {
  758. struct NCDVal__idstring *ids_e = ptr;
  759. return NCDStringIndex_Value(string.mem->string_index, ids_e->string_id).len;
  760. } break;
  761. case EXTERNALSTRING_TYPE: {
  762. struct NCDVal__externalstring *exs_e = ptr;
  763. return exs_e->length;
  764. } break;
  765. default:
  766. ASSERT(0);
  767. return 0;
  768. }
  769. }
  770. MemRef NCDVal_StringMemRef (NCDValRef string)
  771. {
  772. ASSERT(NCDVal_IsString(string))
  773. void *ptr = buffer_at(string.mem, string.idx);
  774. switch (get_internal_type(*(int *)ptr)) {
  775. case STOREDSTRING_TYPE: {
  776. struct NCDVal__string *str_e = ptr;
  777. return MemRef_Make(str_e->data, str_e->length);
  778. } break;
  779. case IDSTRING_TYPE: {
  780. struct NCDVal__idstring *ids_e = ptr;
  781. return NCDStringIndex_Value(string.mem->string_index, ids_e->string_id);
  782. } break;
  783. case EXTERNALSTRING_TYPE: {
  784. struct NCDVal__externalstring *exs_e = ptr;
  785. return MemRef_Make(exs_e->data, exs_e->length);
  786. } break;
  787. default: {
  788. ASSERT(0);
  789. return MemRef_Make(NULL, 0);
  790. } break;
  791. }
  792. }
  793. int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out)
  794. {
  795. ASSERT(NCDVal_IsString(string))
  796. ASSERT(out)
  797. void *ptr = buffer_at(string.mem, string.idx);
  798. switch (get_internal_type(*(int *)ptr)) {
  799. case STOREDSTRING_TYPE: {
  800. struct NCDVal__string *str_e = ptr;
  801. out->data = str_e->data;
  802. out->is_allocated = 0;
  803. return 1;
  804. } break;
  805. case IDSTRING_TYPE: {
  806. struct NCDVal__idstring *ids_e = ptr;
  807. out->data = (char *)NCDStringIndex_Value(string.mem->string_index, ids_e->string_id).ptr;
  808. out->is_allocated = 0;
  809. return 1;
  810. } break;
  811. case EXTERNALSTRING_TYPE: {
  812. struct NCDVal__externalstring *exs_e = ptr;
  813. char *copy = b_strdup_bin(exs_e->data, exs_e->length);
  814. if (!copy) {
  815. return 0;
  816. }
  817. out->data = copy;
  818. out->is_allocated = 1;
  819. return 1;
  820. } break;
  821. default:
  822. ASSERT(0);
  823. return 0;
  824. }
  825. }
  826. NCDValNullTermString NCDValNullTermString_NewDummy (void)
  827. {
  828. NCDValNullTermString nts;
  829. nts.data = NULL;
  830. nts.is_allocated = 0;
  831. return nts;
  832. }
  833. void NCDValNullTermString_Free (NCDValNullTermString *o)
  834. {
  835. if (o->is_allocated) {
  836. BFree(o->data);
  837. }
  838. }
  839. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  840. {
  841. ASSERT(NCDVal_IsIdString(idstring))
  842. struct NCDVal__idstring *ids_e = buffer_at(idstring.mem, idstring.idx);
  843. return ids_e->string_id;
  844. }
  845. BRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring)
  846. {
  847. ASSERT(NCDVal_IsExternalString(externalstring))
  848. struct NCDVal__externalstring *exs_e = buffer_at(externalstring.mem, externalstring.idx);
  849. return exs_e->ref.target;
  850. }
  851. int NCDVal_StringHasNulls (NCDValRef string)
  852. {
  853. ASSERT(NCDVal_IsString(string))
  854. void *ptr = buffer_at(string.mem, string.idx);
  855. switch (get_internal_type(*(int *)ptr)) {
  856. case IDSTRING_TYPE: {
  857. struct NCDVal__idstring *ids_e = ptr;
  858. return NCDStringIndex_HasNulls(string.mem->string_index, ids_e->string_id);
  859. } break;
  860. case STOREDSTRING_TYPE:
  861. case EXTERNALSTRING_TYPE: {
  862. return MemRef_FindChar(NCDVal_StringMemRef(string), '\0', NULL);
  863. } break;
  864. default:
  865. ASSERT(0);
  866. return 0;
  867. }
  868. }
  869. int NCDVal_StringEquals (NCDValRef string, const char *data)
  870. {
  871. ASSERT(NCDVal_IsString(string))
  872. ASSERT(data)
  873. size_t data_len = strlen(data);
  874. return NCDVal_StringLength(string) == data_len && NCDVal_StringRegionEquals(string, 0, data_len, data);
  875. }
  876. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id)
  877. {
  878. ASSERT(NCDVal_IsString(string))
  879. ASSERT(string_id >= 0)
  880. void *ptr = buffer_at(string.mem, string.idx);
  881. switch (get_internal_type(*(int *)ptr)) {
  882. case STOREDSTRING_TYPE: {
  883. struct NCDVal__string *str_e = ptr;
  884. return MemRef_Equal(NCDStringIndex_Value(string.mem->string_index, string_id), MemRef_Make(str_e->data, str_e->length));
  885. } break;
  886. case IDSTRING_TYPE: {
  887. struct NCDVal__idstring *ids_e = ptr;
  888. return ids_e->string_id == string_id;
  889. } break;
  890. case EXTERNALSTRING_TYPE: {
  891. struct NCDVal__externalstring *exs_e = ptr;
  892. return MemRef_Equal(NCDStringIndex_Value(string.mem->string_index, string_id), MemRef_Make(exs_e->data, exs_e->length));
  893. } break;
  894. default:
  895. ASSERT(0);
  896. return 0;
  897. }
  898. }
  899. int NCDVal_StringMemCmp (NCDValRef string1, NCDValRef string2, size_t start1, size_t start2, size_t length)
  900. {
  901. ASSERT(NCDVal_IsString(string1))
  902. ASSERT(NCDVal_IsString(string2))
  903. ASSERT(start1 <= NCDVal_StringLength(string1))
  904. ASSERT(start2 <= NCDVal_StringLength(string2))
  905. ASSERT(length <= NCDVal_StringLength(string1) - start1)
  906. ASSERT(length <= NCDVal_StringLength(string2) - start2)
  907. return memcmp(NCDVal_StringData(string1) + start1, NCDVal_StringData(string2) + start2, length);
  908. }
  909. void NCDVal_StringCopyOut (NCDValRef string, size_t start, size_t length, char *dst)
  910. {
  911. ASSERT(NCDVal_IsString(string))
  912. ASSERT(start <= NCDVal_StringLength(string))
  913. ASSERT(length <= NCDVal_StringLength(string) - start)
  914. memcpy(dst, NCDVal_StringData(string) + start, length);
  915. }
  916. int NCDVal_StringRegionEquals (NCDValRef string, size_t start, size_t length, const char *data)
  917. {
  918. ASSERT(NCDVal_IsString(string))
  919. ASSERT(start <= NCDVal_StringLength(string))
  920. ASSERT(length <= NCDVal_StringLength(string) - start)
  921. return !memcmp(NCDVal_StringData(string) + start, data, length);
  922. }
  923. int NCDVal_IsList (NCDValRef val)
  924. {
  925. assert_val(val);
  926. return NCDVal_Type(val) == NCDVAL_LIST;
  927. }
  928. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  929. {
  930. assert_mem(mem);
  931. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__list)) / sizeof(NCDVal__idx)) {
  932. goto fail;
  933. }
  934. NCDVal__idx size = sizeof(struct NCDVal__list) + maxcount * sizeof(NCDVal__idx);
  935. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__list));
  936. if (idx < 0) {
  937. goto fail;
  938. }
  939. struct NCDVal__list *list_e = buffer_at(mem, idx);
  940. list_e->type = make_type(NCDVAL_LIST, 0);
  941. list_e->maxcount = maxcount;
  942. list_e->count = 0;
  943. return make_ref(mem, idx);
  944. fail:
  945. return NCDVal_NewInvalid();
  946. }
  947. int NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  948. {
  949. ASSERT(NCDVal_IsList(list))
  950. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  951. ASSERT(elem.mem == list.mem)
  952. assert_val_only(list.mem, elem.idx);
  953. struct NCDVal__list *list_e = buffer_at(list.mem, list.idx);
  954. int new_type = list_e->type;
  955. if (!bump_depth(&new_type, get_val_depth(elem))) {
  956. return 0;
  957. }
  958. list_e->type = new_type;
  959. list_e->elem_indices[list_e->count++] = elem.idx;
  960. return 1;
  961. }
  962. size_t NCDVal_ListCount (NCDValRef list)
  963. {
  964. ASSERT(NCDVal_IsList(list))
  965. struct NCDVal__list *list_e = buffer_at(list.mem, list.idx);
  966. return list_e->count;
  967. }
  968. size_t NCDVal_ListMaxCount (NCDValRef list)
  969. {
  970. ASSERT(NCDVal_IsList(list))
  971. struct NCDVal__list *list_e = buffer_at(list.mem, list.idx);
  972. return list_e->maxcount;
  973. }
  974. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  975. {
  976. ASSERT(NCDVal_IsList(list))
  977. ASSERT(pos < NCDVal_ListCount(list))
  978. struct NCDVal__list *list_e = buffer_at(list.mem, list.idx);
  979. ASSERT(pos < list_e->count)
  980. assert_val_only(list.mem, list_e->elem_indices[pos]);
  981. return make_ref(list.mem, list_e->elem_indices[pos]);
  982. }
  983. int NCDVal_ListRead (NCDValRef list, int num, ...)
  984. {
  985. ASSERT(NCDVal_IsList(list))
  986. ASSERT(num >= 0)
  987. struct NCDVal__list *list_e = buffer_at(list.mem, list.idx);
  988. if (num != list_e->count) {
  989. return 0;
  990. }
  991. va_list ap;
  992. va_start(ap, num);
  993. for (int i = 0; i < num; i++) {
  994. NCDValRef *dest = va_arg(ap, NCDValRef *);
  995. *dest = make_ref(list.mem, list_e->elem_indices[i]);
  996. }
  997. va_end(ap);
  998. return 1;
  999. }
  1000. int NCDVal_ListReadStart (NCDValRef list, int start, int num, ...)
  1001. {
  1002. ASSERT(NCDVal_IsList(list))
  1003. ASSERT(start <= NCDVal_ListCount(list))
  1004. ASSERT(num >= 0)
  1005. struct NCDVal__list *list_e = buffer_at(list.mem, list.idx);
  1006. if (num != list_e->count - start) {
  1007. return 0;
  1008. }
  1009. va_list ap;
  1010. va_start(ap, num);
  1011. for (int i = 0; i < num; i++) {
  1012. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1013. *dest = make_ref(list.mem, list_e->elem_indices[start + i]);
  1014. }
  1015. va_end(ap);
  1016. return 1;
  1017. }
  1018. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  1019. {
  1020. ASSERT(NCDVal_IsList(list))
  1021. ASSERT(num >= 0)
  1022. struct NCDVal__list *list_e = buffer_at(list.mem, list.idx);
  1023. if (num > list_e->count) {
  1024. return 0;
  1025. }
  1026. va_list ap;
  1027. va_start(ap, num);
  1028. for (int i = 0; i < num; i++) {
  1029. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1030. *dest = make_ref(list.mem, list_e->elem_indices[i]);
  1031. }
  1032. va_end(ap);
  1033. return 1;
  1034. }
  1035. int NCDVal_IsMap (NCDValRef val)
  1036. {
  1037. assert_val(val);
  1038. return NCDVal_Type(val) == NCDVAL_MAP;
  1039. }
  1040. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  1041. {
  1042. assert_mem(mem);
  1043. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__map)) / sizeof(struct NCDVal__mapelem)) {
  1044. goto fail;
  1045. }
  1046. NCDVal__idx size = sizeof(struct NCDVal__map) + maxcount * sizeof(struct NCDVal__mapelem);
  1047. NCDVal__idx idx = buffer_allocate(mem, size, __alignof(struct NCDVal__map));
  1048. if (idx < 0) {
  1049. goto fail;
  1050. }
  1051. struct NCDVal__map *map_e = buffer_at(mem, idx);
  1052. map_e->type = make_type(NCDVAL_MAP, 0);
  1053. map_e->maxcount = maxcount;
  1054. map_e->count = 0;
  1055. NCDVal__MapTree_Init(&map_e->tree);
  1056. return make_ref(mem, idx);
  1057. fail:
  1058. return NCDVal_NewInvalid();
  1059. }
  1060. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val, int *out_inserted)
  1061. {
  1062. ASSERT(NCDVal_IsMap(map))
  1063. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  1064. ASSERT(key.mem == map.mem)
  1065. ASSERT(val.mem == map.mem)
  1066. assert_val_only(map.mem, key.idx);
  1067. assert_val_only(map.mem, val.idx);
  1068. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1069. int new_type = map_e->type;
  1070. if (!bump_depth(&new_type, get_val_depth(key)) || !bump_depth(&new_type, get_val_depth(val))) {
  1071. goto fail0;
  1072. }
  1073. NCDVal__idx elemidx = make_map_elem_idx(map.idx, map_e->count);
  1074. struct NCDVal__mapelem *me_e = buffer_at(map.mem, elemidx);
  1075. ASSERT(me_e == &map_e->elems[map_e->count])
  1076. me_e->key_idx = key.idx;
  1077. me_e->val_idx = val.idx;
  1078. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  1079. if (!res) {
  1080. if (out_inserted) {
  1081. *out_inserted = 0;
  1082. }
  1083. return 1;
  1084. }
  1085. map_e->type = new_type;
  1086. map_e->count++;
  1087. if (out_inserted) {
  1088. *out_inserted = 1;
  1089. }
  1090. return 1;
  1091. fail0:
  1092. return 0;
  1093. }
  1094. size_t NCDVal_MapCount (NCDValRef map)
  1095. {
  1096. ASSERT(NCDVal_IsMap(map))
  1097. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1098. return map_e->count;
  1099. }
  1100. size_t NCDVal_MapMaxCount (NCDValRef map)
  1101. {
  1102. ASSERT(NCDVal_IsMap(map))
  1103. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1104. return map_e->maxcount;
  1105. }
  1106. int NCDVal_MapElemInvalid (NCDValMapElem me)
  1107. {
  1108. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  1109. return me.elemidx < 0;
  1110. }
  1111. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  1112. {
  1113. ASSERT(NCDVal_IsMap(map))
  1114. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1115. if (map_e->count == 0) {
  1116. return make_map_elem(-1);
  1117. }
  1118. NCDVal__idx elemidx = make_map_elem_idx(map.idx, 0);
  1119. assert_map_elem_only(map, elemidx);
  1120. return make_map_elem(elemidx);
  1121. }
  1122. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  1123. {
  1124. assert_map_elem(map, me);
  1125. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1126. ASSERT(map_e->count > 0)
  1127. NCDVal__idx last_elemidx = make_map_elem_idx(map.idx, map_e->count - 1);
  1128. ASSERT(me.elemidx <= last_elemidx)
  1129. if (me.elemidx == last_elemidx) {
  1130. return make_map_elem(-1);
  1131. }
  1132. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  1133. assert_map_elem_only(map, elemidx);
  1134. return make_map_elem(elemidx);
  1135. }
  1136. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  1137. {
  1138. ASSERT(NCDVal_IsMap(map))
  1139. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1140. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  1141. ASSERT(ref.link == -1 || (assert_map_elem_only(map, ref.link), 1))
  1142. return make_map_elem(ref.link);
  1143. }
  1144. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  1145. {
  1146. assert_map_elem(map, me);
  1147. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1148. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  1149. ASSERT(ref.link == -1 || (assert_map_elem_only(map, ref.link), 1))
  1150. return make_map_elem(ref.link);
  1151. }
  1152. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  1153. {
  1154. assert_map_elem(map, me);
  1155. struct NCDVal__mapelem *me_e = buffer_at(map.mem, me.elemidx);
  1156. return make_ref(map.mem, me_e->key_idx);
  1157. }
  1158. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  1159. {
  1160. assert_map_elem(map, me);
  1161. struct NCDVal__mapelem *me_e = buffer_at(map.mem, me.elemidx);
  1162. return make_ref(map.mem, me_e->val_idx);
  1163. }
  1164. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  1165. {
  1166. ASSERT(NCDVal_IsMap(map))
  1167. assert_val(key);
  1168. struct NCDVal__map *map_e = buffer_at(map.mem, map.idx);
  1169. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  1170. ASSERT(ref.link == -1 || (assert_map_elem_only(map, ref.link), 1))
  1171. return make_map_elem(ref.link);
  1172. }
  1173. NCDValRef NCDVal_MapGetValue (NCDValRef map, const char *key_str)
  1174. {
  1175. ASSERT(NCDVal_IsMap(map))
  1176. ASSERT(key_str)
  1177. NCDValMem mem;
  1178. mem.string_index = map.mem->string_index;
  1179. mem.size = NCDVAL_FASTBUF_SIZE;
  1180. mem.used = sizeof(struct NCDVal__externalstring);
  1181. mem.first_ref = -1;
  1182. struct NCDVal__externalstring *exs_e = (void *)mem.fastbuf;
  1183. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  1184. exs_e->data = key_str;
  1185. exs_e->length = strlen(key_str);
  1186. exs_e->ref.target = NULL;
  1187. NCDValRef key = make_ref(&mem, 0);
  1188. NCDValMapElem elem = NCDVal_MapFindKey(map, key);
  1189. if (NCDVal_MapElemInvalid(elem)) {
  1190. return NCDVal_NewInvalid();
  1191. }
  1192. return NCDVal_MapElemVal(map, elem);
  1193. }
  1194. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  1195. {
  1196. ASSERT(idx >= 0)
  1197. assert_val_only(mem, idx);
  1198. ASSERT(out_num_instr)
  1199. *out_num_instr = 0;
  1200. void *ptr = buffer_at(mem, idx);
  1201. struct NCDVal__instr instr;
  1202. switch (get_internal_type(*((int *)(ptr)))) {
  1203. case STOREDSTRING_TYPE:
  1204. case IDSTRING_TYPE:
  1205. case EXTERNALSTRING_TYPE: {
  1206. } break;
  1207. case NCDVAL_LIST: {
  1208. struct NCDVal__list *list_e = ptr;
  1209. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  1210. int elem_changed = 0;
  1211. if (list_e->elem_indices[i] < -1) {
  1212. if (prog) {
  1213. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1214. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  1215. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1216. prog->instrs[prog->num_instrs++] = instr;
  1217. }
  1218. (*out_num_instr)++;
  1219. elem_changed = 1;
  1220. } else {
  1221. size_t elem_num_instr;
  1222. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  1223. (*out_num_instr) += elem_num_instr;
  1224. if (elem_num_instr > 0) {
  1225. elem_changed = 1;
  1226. }
  1227. }
  1228. if (elem_changed) {
  1229. if (prog) {
  1230. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1231. instr.bumpdepth.parent_idx = idx;
  1232. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1233. prog->instrs[prog->num_instrs++] = instr;
  1234. }
  1235. (*out_num_instr)++;
  1236. }
  1237. }
  1238. } break;
  1239. case NCDVAL_MAP: {
  1240. struct NCDVal__map *map_e = ptr;
  1241. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  1242. int key_changed = 0;
  1243. int val_changed = 0;
  1244. if (map_e->elems[i].key_idx < -1) {
  1245. if (prog) {
  1246. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1247. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  1248. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1249. prog->instrs[prog->num_instrs++] = instr;
  1250. }
  1251. (*out_num_instr)++;
  1252. key_changed = 1;
  1253. } else {
  1254. size_t key_num_instr;
  1255. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  1256. (*out_num_instr) += key_num_instr;
  1257. if (key_num_instr > 0) {
  1258. key_changed = 1;
  1259. }
  1260. }
  1261. if (map_e->elems[i].val_idx < -1) {
  1262. if (prog) {
  1263. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1264. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  1265. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1266. prog->instrs[prog->num_instrs++] = instr;
  1267. }
  1268. (*out_num_instr)++;
  1269. val_changed = 1;
  1270. } else {
  1271. size_t val_num_instr;
  1272. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  1273. (*out_num_instr) += val_num_instr;
  1274. if (val_num_instr > 0) {
  1275. val_changed = 1;
  1276. }
  1277. }
  1278. if (key_changed) {
  1279. if (prog) {
  1280. instr.type = NCDVAL_INSTR_REINSERT;
  1281. instr.reinsert.mapidx = idx;
  1282. instr.reinsert.elempos = i;
  1283. prog->instrs[prog->num_instrs++] = instr;
  1284. }
  1285. (*out_num_instr)++;
  1286. if (prog) {
  1287. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1288. instr.bumpdepth.parent_idx = idx;
  1289. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1290. prog->instrs[prog->num_instrs++] = instr;
  1291. }
  1292. (*out_num_instr)++;
  1293. }
  1294. if (val_changed) {
  1295. if (prog) {
  1296. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1297. instr.bumpdepth.parent_idx = idx;
  1298. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1299. prog->instrs[prog->num_instrs++] = instr;
  1300. }
  1301. (*out_num_instr)++;
  1302. }
  1303. }
  1304. } break;
  1305. default: ASSERT(0);
  1306. }
  1307. }
  1308. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  1309. {
  1310. assert_val(val);
  1311. ASSERT(!NCDVal_IsPlaceholder(val))
  1312. size_t num_instrs;
  1313. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  1314. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  1315. BLog(BLOG_ERROR, "BAllocArray failed");
  1316. return 0;
  1317. }
  1318. o->num_instrs = 0;
  1319. size_t num_instrs2;
  1320. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  1321. ASSERT(num_instrs2 == num_instrs)
  1322. ASSERT(o->num_instrs == num_instrs)
  1323. return 1;
  1324. }
  1325. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  1326. {
  1327. BFree(o->instrs);
  1328. }
  1329. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  1330. {
  1331. assert_mem(mem);
  1332. ASSERT(replace)
  1333. for (size_t i = 0; i < prog.num_instrs; i++) {
  1334. struct NCDVal__instr instr = prog.instrs[i];
  1335. switch (instr.type) {
  1336. case NCDVAL_INSTR_PLACEHOLDER: {
  1337. #ifndef NDEBUG
  1338. NCDVal__idx *check_plptr = buffer_at(mem, instr.placeholder.plidx);
  1339. ASSERT(*check_plptr < -1)
  1340. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  1341. #endif
  1342. NCDValRef repval;
  1343. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  1344. return 0;
  1345. }
  1346. ASSERT(repval.mem == mem)
  1347. NCDVal__idx *plptr = buffer_at(mem, instr.placeholder.plidx);
  1348. *plptr = repval.idx;
  1349. } break;
  1350. case NCDVAL_INSTR_REINSERT: {
  1351. assert_val_only(mem, instr.reinsert.mapidx);
  1352. struct NCDVal__map *map_e = buffer_at(mem, instr.reinsert.mapidx);
  1353. ASSERT(get_internal_type(map_e->type) == NCDVAL_MAP)
  1354. ASSERT(instr.reinsert.elempos >= 0)
  1355. ASSERT(instr.reinsert.elempos < map_e->count)
  1356. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], make_map_elem_idx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  1357. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  1358. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  1359. BLog(BLOG_ERROR, "duplicate key in map");
  1360. return 0;
  1361. }
  1362. } break;
  1363. case NCDVAL_INSTR_BUMPDEPTH: {
  1364. assert_val_only(mem, instr.bumpdepth.parent_idx);
  1365. int *parent_type_ptr = buffer_at(mem, instr.bumpdepth.parent_idx);
  1366. NCDVal__idx *child_type_idx_ptr = buffer_at(mem, instr.bumpdepth.child_idx_idx);
  1367. assert_val_only(mem, *child_type_idx_ptr);
  1368. int *child_type_ptr = buffer_at(mem, *child_type_idx_ptr);
  1369. if (!bump_depth(parent_type_ptr, get_depth(*child_type_ptr))) {
  1370. BLog(BLOG_ERROR, "depth limit exceeded");
  1371. return 0;
  1372. }
  1373. } break;
  1374. default: ASSERT(0);
  1375. }
  1376. }
  1377. return 1;
  1378. }