NCDVal.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/bsize.h>
  35. #include <misc/balloc.h>
  36. #include <base/BLog.h>
  37. #include "NCDVal.h"
  38. #include <generated/blog_channel_NCDVal.h>
  39. #define EXTERNAL_TYPE_MASK ((1 << 3) - 1)
  40. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  41. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  42. {
  43. ASSERT(idx >= 0)
  44. ASSERT(idx < o->used)
  45. return (o->buf ? o->buf : o->fastbuf) + idx;
  46. }
  47. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, bsize_t alloc_size, NCDVal__idx align)
  48. {
  49. if (alloc_size.is_overflow) {
  50. return -1;
  51. }
  52. NCDVal__idx mod = o->used % align;
  53. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  54. if (alloc_size.value > NCDVAL_MAXIDX - align_extra) {
  55. return -1;
  56. }
  57. NCDVal__idx aligned_alloc_size = align_extra + alloc_size.value;
  58. if (aligned_alloc_size > o->size - o->used) {
  59. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  60. while (aligned_alloc_size > newsize - o->used) {
  61. if (newsize > NCDVAL_MAXIDX / 2) {
  62. return -1;
  63. }
  64. newsize *= 2;
  65. }
  66. char *newbuf;
  67. if (!o->buf) {
  68. newbuf = malloc(newsize);
  69. if (!newbuf) {
  70. return -1;
  71. }
  72. memcpy(newbuf, o->fastbuf, o->used);
  73. } else {
  74. newbuf = realloc(o->buf, newsize);
  75. if (!newbuf) {
  76. return -1;
  77. }
  78. }
  79. o->buf = newbuf;
  80. o->size = newsize;
  81. }
  82. NCDVal__idx idx = o->used + align_extra;
  83. o->used += aligned_alloc_size;
  84. return idx;
  85. }
  86. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  87. {
  88. ASSERT(idx == -1 || mem)
  89. NCDValRef ref = {mem, idx};
  90. return ref;
  91. }
  92. static void NCDVal__AssertMem (NCDValMem *mem)
  93. {
  94. ASSERT(mem)
  95. ASSERT(mem->size >= 0)
  96. ASSERT(mem->used >= 0)
  97. ASSERT(mem->used <= mem->size)
  98. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  99. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  100. }
  101. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  102. {
  103. #ifndef NDEBUG
  104. const char *e_cbuf = e_buf;
  105. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  106. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  107. #endif
  108. }
  109. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  110. {
  111. // placeholders
  112. if (idx < -1) {
  113. return;
  114. }
  115. ASSERT(idx >= 0)
  116. ASSERT(idx + sizeof(int) <= mem->used)
  117. #ifndef NDEBUG
  118. int *type_ptr = NCDValMem__BufAt(mem, idx);
  119. switch (*type_ptr) {
  120. case NCDVAL_STRING: {
  121. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  122. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  123. ASSERT(str_e->length >= 0)
  124. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  125. } break;
  126. case NCDVAL_LIST: {
  127. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  128. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  129. ASSERT(list_e->maxcount >= 0)
  130. ASSERT(list_e->count >= 0)
  131. ASSERT(list_e->count <= list_e->maxcount)
  132. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  133. } break;
  134. case NCDVAL_MAP: {
  135. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  136. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  137. ASSERT(map_e->maxcount >= 0)
  138. ASSERT(map_e->count >= 0)
  139. ASSERT(map_e->count <= map_e->maxcount)
  140. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  141. } break;
  142. case IDSTRING_TYPE: {
  143. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  144. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  145. ASSERT(ids_e->string_id >= 0)
  146. ASSERT(ids_e->string_index)
  147. } break;
  148. default: ASSERT(0);
  149. }
  150. #endif
  151. }
  152. static void NCDVal__AssertVal (NCDValRef val)
  153. {
  154. NCDVal__AssertMem(val.mem);
  155. NCDVal__AssertValOnly(val.mem, val.idx);
  156. }
  157. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  158. {
  159. ASSERT(elemidx >= 0 || elemidx == -1)
  160. NCDValMapElem me = {elemidx};
  161. return me;
  162. }
  163. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  164. {
  165. #ifndef NDEBUG
  166. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  167. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  168. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  169. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  170. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  171. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  172. #endif
  173. }
  174. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  175. {
  176. ASSERT(NCDVal_IsMap(map))
  177. NCDVal__MapAssertElemOnly(map, me.elemidx);
  178. }
  179. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  180. {
  181. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  182. }
  183. #include "NCDVal_maptree.h"
  184. #include <structure/CAvl_impl.h>
  185. void NCDValMem_Init (NCDValMem *o)
  186. {
  187. o->buf = NULL;
  188. o->size = NCDVAL_FASTBUF_SIZE;
  189. o->used = 0;
  190. }
  191. void NCDValMem_Free (NCDValMem *o)
  192. {
  193. NCDVal__AssertMem(o);
  194. if (o->buf) {
  195. BFree(o->buf);
  196. }
  197. }
  198. int NCDValMem_FreeExport (NCDValMem *o, char **out_data, size_t *out_len)
  199. {
  200. NCDVal__AssertMem(o);
  201. ASSERT(out_data)
  202. ASSERT(out_len)
  203. if (o->buf) {
  204. *out_data = o->buf;
  205. } else {
  206. if (!(*out_data = BAlloc(o->used))) {
  207. return 0;
  208. }
  209. memcpy(*out_data, o->fastbuf, o->used);
  210. }
  211. *out_len = o->used;
  212. return 1;
  213. }
  214. int NCDValMem_InitImport (NCDValMem *o, const char *data, size_t len)
  215. {
  216. ASSERT(data)
  217. ASSERT(len <= NCDVAL_MAXIDX)
  218. if (len <= NCDVAL_FASTBUF_SIZE) {
  219. memcpy(o->fastbuf, data, len);
  220. o->buf = NULL;
  221. o->size = NCDVAL_FASTBUF_SIZE;
  222. } else {
  223. size_t cap = len;
  224. if (cap < NCDVAL_FIRST_SIZE) {
  225. cap = NCDVAL_FIRST_SIZE;
  226. }
  227. if (!(o->buf = BAlloc(cap))) {
  228. return 0;
  229. }
  230. memcpy(o->buf, data, len);
  231. o->size = cap;
  232. }
  233. o->used = len;
  234. return 1;
  235. }
  236. void NCDVal_Assert (NCDValRef val)
  237. {
  238. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  239. }
  240. int NCDVal_IsInvalid (NCDValRef val)
  241. {
  242. NCDVal_Assert(val);
  243. return (val.idx == -1);
  244. }
  245. int NCDVal_IsPlaceholder (NCDValRef val)
  246. {
  247. NCDVal_Assert(val);
  248. return (val.idx < -1);
  249. }
  250. int NCDVal_Type (NCDValRef val)
  251. {
  252. NCDVal__AssertVal(val);
  253. if (val.idx < -1) {
  254. return NCDVAL_PLACEHOLDER;
  255. }
  256. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  257. return (*type_ptr & EXTERNAL_TYPE_MASK);
  258. }
  259. NCDValRef NCDVal_NewInvalid (void)
  260. {
  261. NCDValRef ref = {NULL, -1};
  262. return ref;
  263. }
  264. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  265. {
  266. NCDVal__AssertMem(mem);
  267. ASSERT(plid >= 0)
  268. ASSERT(NCDVAL_MINIDX + plid < -1)
  269. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  270. return ref;
  271. }
  272. int NCDVal_PlaceholderId (NCDValRef val)
  273. {
  274. ASSERT(NCDVal_IsPlaceholder(val))
  275. return (val.idx - NCDVAL_MINIDX);
  276. }
  277. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  278. {
  279. NCDVal__AssertMem(mem);
  280. NCDVal__AssertVal(val);
  281. if (val.idx < -1) {
  282. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  283. }
  284. void *ptr = NCDValMem__BufAt(val.mem, val.idx);
  285. switch (*(int *)ptr) {
  286. case NCDVAL_STRING: {
  287. size_t len = NCDVal_StringLength(val);
  288. NCDValRef copy = NCDVal_NewStringUninitialized(mem, len);
  289. if (NCDVal_IsInvalid(copy)) {
  290. goto fail;
  291. }
  292. memcpy((char *)NCDVal_StringValue(copy), NCDVal_StringValue(val), len);
  293. return copy;
  294. } break;
  295. case NCDVAL_LIST: {
  296. size_t count = NCDVal_ListCount(val);
  297. NCDValRef copy = NCDVal_NewList(mem, count);
  298. if (NCDVal_IsInvalid(copy)) {
  299. goto fail;
  300. }
  301. for (size_t i = 0; i < count; i++) {
  302. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal_ListGet(val, i));
  303. if (NCDVal_IsInvalid(elem_copy)) {
  304. goto fail;
  305. }
  306. NCDVal_ListAppend(copy, elem_copy);
  307. }
  308. return copy;
  309. } break;
  310. case NCDVAL_MAP: {
  311. size_t count = NCDVal_MapCount(val);
  312. NCDValRef copy = NCDVal_NewMap(mem, count);
  313. if (NCDVal_IsInvalid(copy)) {
  314. goto fail;
  315. }
  316. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  317. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  318. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  319. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  320. goto fail;
  321. }
  322. int res = NCDVal_MapInsert(copy, key_copy, val_copy);
  323. ASSERT_EXECUTE(res)
  324. }
  325. return copy;
  326. } break;
  327. case IDSTRING_TYPE: {
  328. struct NCDVal__idstring *ids_e = ptr;
  329. return NCDVal_NewIdString(mem, ids_e->string_id, ids_e->string_index);
  330. } break;
  331. default: ASSERT(0);
  332. }
  333. ASSERT(0);
  334. fail:
  335. return NCDVal_NewInvalid();
  336. }
  337. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  338. {
  339. NCDVal__AssertVal(val1);
  340. NCDVal__AssertVal(val2);
  341. int type1 = NCDVal_Type(val1);
  342. int type2 = NCDVal_Type(val2);
  343. if (type1 != type2) {
  344. return (type1 > type2) - (type1 < type2);
  345. }
  346. switch (type1) {
  347. case NCDVAL_STRING: {
  348. size_t len1 = NCDVal_StringLength(val1);
  349. size_t len2 = NCDVal_StringLength(val2);
  350. size_t min_len = len1 < len2 ? len1 : len2;
  351. int cmp = memcmp(NCDVal_StringValue(val1), NCDVal_StringValue(val2), min_len);
  352. if (cmp) {
  353. return (cmp > 0) - (cmp < 0);
  354. }
  355. return (len1 > len2) - (len1 < len2);
  356. } break;
  357. case NCDVAL_LIST: {
  358. size_t count1 = NCDVal_ListCount(val1);
  359. size_t count2 = NCDVal_ListCount(val2);
  360. size_t min_count = count1 < count2 ? count1 : count2;
  361. for (size_t i = 0; i < min_count; i++) {
  362. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  363. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  364. int cmp = NCDVal_Compare(ev1, ev2);
  365. if (cmp) {
  366. return cmp;
  367. }
  368. }
  369. return (count1 > count2) - (count1 < count2);
  370. } break;
  371. case NCDVAL_MAP: {
  372. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  373. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  374. while (1) {
  375. int inv1 = NCDVal_MapElemInvalid(e1);
  376. int inv2 = NCDVal_MapElemInvalid(e2);
  377. if (inv1 || inv2) {
  378. return inv2 - inv1;
  379. }
  380. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  381. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  382. int cmp = NCDVal_Compare(key1, key2);
  383. if (cmp) {
  384. return cmp;
  385. }
  386. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  387. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  388. cmp = NCDVal_Compare(value1, value2);
  389. if (cmp) {
  390. return cmp;
  391. }
  392. e1 = NCDVal_MapOrderedNext(val1, e1);
  393. e2 = NCDVal_MapOrderedNext(val2, e2);
  394. }
  395. } break;
  396. case NCDVAL_PLACEHOLDER: {
  397. int plid1 = NCDVal_PlaceholderId(val1);
  398. int plid2 = NCDVal_PlaceholderId(val2);
  399. return (plid1 > plid2) - (plid1 < plid2);
  400. } break;
  401. default:
  402. ASSERT(0);
  403. return 0;
  404. }
  405. }
  406. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  407. {
  408. NCDVal_Assert(val);
  409. NCDValSafeRef sval = {val.idx};
  410. return sval;
  411. }
  412. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  413. {
  414. NCDVal__AssertMem(mem);
  415. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  416. NCDValRef val = {mem, sval.idx};
  417. return val;
  418. }
  419. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  420. {
  421. NCDVal__AssertMem(mem);
  422. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  423. NCDValRef val2 = {mem, val.idx};
  424. return val2;
  425. }
  426. int NCDVal_IsString (NCDValRef val)
  427. {
  428. NCDVal__AssertVal(val);
  429. return NCDVal_Type(val) == NCDVAL_STRING;
  430. }
  431. int NCDVal_IsIdString (NCDValRef val)
  432. {
  433. NCDVal__AssertVal(val);
  434. return !(val.idx < -1) && *(int *)NCDValMem__BufAt(val.mem, val.idx) == IDSTRING_TYPE;
  435. }
  436. int NCDVal_IsStringNoNulls (NCDValRef val)
  437. {
  438. NCDVal__AssertVal(val);
  439. return NCDVal_Type(val) == NCDVAL_STRING && strlen(NCDVal_StringValue(val)) == NCDVal_StringLength(val);
  440. }
  441. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  442. {
  443. NCDVal__AssertMem(mem);
  444. ASSERT(data)
  445. NCDVal_AssertExternal(mem, data, strlen(data));
  446. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  447. }
  448. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  449. {
  450. NCDVal__AssertMem(mem);
  451. ASSERT(len == 0 || data)
  452. NCDVal_AssertExternal(mem, data, len);
  453. if (len == SIZE_MAX) {
  454. goto fail;
  455. }
  456. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  457. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  458. if (idx < 0) {
  459. goto fail;
  460. }
  461. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  462. str_e->type = NCDVAL_STRING;
  463. str_e->length = len;
  464. if (len > 0) {
  465. memcpy(str_e->data, data, len);
  466. }
  467. str_e->data[len] = '\0';
  468. return NCDVal__Ref(mem, idx);
  469. fail:
  470. return NCDVal_NewInvalid();
  471. }
  472. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  473. {
  474. NCDVal__AssertMem(mem);
  475. if (len == SIZE_MAX) {
  476. goto fail;
  477. }
  478. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  479. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  480. if (idx < 0) {
  481. goto fail;
  482. }
  483. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  484. str_e->type = NCDVAL_STRING;
  485. str_e->length = len;
  486. str_e->data[len] = '\0';
  487. return NCDVal__Ref(mem, idx);
  488. fail:
  489. return NCDVal_NewInvalid();
  490. }
  491. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index)
  492. {
  493. NCDVal__AssertMem(mem);
  494. ASSERT(string_id >= 0)
  495. ASSERT(string_index)
  496. bsize_t size = bsize_fromsize(sizeof(struct NCDVal__idstring));
  497. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  498. if (idx < 0) {
  499. goto fail;
  500. }
  501. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  502. ids_e->type = IDSTRING_TYPE;
  503. ids_e->string_id = string_id;
  504. ids_e->string_index = string_index;
  505. return NCDVal__Ref(mem, idx);
  506. fail:
  507. return NCDVal_NewInvalid();
  508. }
  509. const char * NCDVal_StringValue (NCDValRef string)
  510. {
  511. ASSERT(NCDVal_IsString(string))
  512. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  513. if (*(int *)ptr == IDSTRING_TYPE) {
  514. struct NCDVal__idstring *ids_e = ptr;
  515. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  516. return value;
  517. }
  518. struct NCDVal__string *str_e = ptr;
  519. return str_e->data;
  520. }
  521. size_t NCDVal_StringLength (NCDValRef string)
  522. {
  523. ASSERT(NCDVal_IsString(string))
  524. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  525. if (*(int *)ptr == IDSTRING_TYPE) {
  526. struct NCDVal__idstring *ids_e = ptr;
  527. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  528. return strlen(value);
  529. }
  530. struct NCDVal__string *str_e = ptr;;
  531. return str_e->length;
  532. }
  533. void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id,
  534. NCDStringIndex **out_string_index)
  535. {
  536. ASSERT(NCDVal_IsIdString(idstring))
  537. ASSERT(out_string_id)
  538. ASSERT(out_string_index)
  539. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  540. *out_string_id = ids_e->string_id;
  541. *out_string_index = ids_e->string_index;
  542. }
  543. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  544. {
  545. ASSERT(NCDVal_IsIdString(idstring))
  546. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  547. return ids_e->string_id;
  548. }
  549. NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring)
  550. {
  551. ASSERT(NCDVal_IsIdString(idstring))
  552. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  553. return ids_e->string_index;
  554. }
  555. int NCDVal_StringHasNulls (NCDValRef string)
  556. {
  557. ASSERT(NCDVal_IsString(string))
  558. return strlen(NCDVal_StringValue(string)) != NCDVal_StringLength(string);
  559. }
  560. int NCDVal_StringEquals (NCDValRef string, const char *data)
  561. {
  562. ASSERT(NCDVal_IsString(string))
  563. ASSERT(data)
  564. return !NCDVal_StringHasNulls(string) && !strcmp(NCDVal_StringValue(string), data);
  565. }
  566. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id,
  567. NCDStringIndex *string_index)
  568. {
  569. ASSERT(NCDVal_IsString(string))
  570. ASSERT(string_id >= 0)
  571. ASSERT(string_index)
  572. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  573. if (*(int *)ptr == IDSTRING_TYPE) {
  574. struct NCDVal__idstring *ids_e = ptr;
  575. ASSERT(ids_e->string_index == string_index)
  576. return ids_e->string_id == string_id;
  577. }
  578. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  579. struct NCDVal__string *str_e = ptr;
  580. return !strcmp(str_e->data, string_data) && str_e->length == strlen(string_data);
  581. }
  582. int NCDVal_IsList (NCDValRef val)
  583. {
  584. NCDVal__AssertVal(val);
  585. return NCDVal_Type(val) == NCDVAL_LIST;
  586. }
  587. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  588. {
  589. NCDVal__AssertMem(mem);
  590. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__list)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(NCDVal__idx))));
  591. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  592. if (idx < 0) {
  593. goto fail;
  594. }
  595. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  596. list_e->type = NCDVAL_LIST;
  597. list_e->maxcount = maxcount;
  598. list_e->count = 0;
  599. return NCDVal__Ref(mem, idx);
  600. fail:
  601. return NCDVal_NewInvalid();
  602. }
  603. void NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  604. {
  605. ASSERT(NCDVal_IsList(list))
  606. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  607. ASSERT(elem.mem == list.mem)
  608. NCDVal__AssertValOnly(list.mem, elem.idx);
  609. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  610. list_e->elem_indices[list_e->count++] = elem.idx;
  611. }
  612. size_t NCDVal_ListCount (NCDValRef list)
  613. {
  614. ASSERT(NCDVal_IsList(list))
  615. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  616. return list_e->count;
  617. }
  618. size_t NCDVal_ListMaxCount (NCDValRef list)
  619. {
  620. ASSERT(NCDVal_IsList(list))
  621. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  622. return list_e->maxcount;
  623. }
  624. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  625. {
  626. ASSERT(NCDVal_IsList(list))
  627. ASSERT(pos < NCDVal_ListCount(list))
  628. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  629. ASSERT(pos < list_e->count)
  630. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  631. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  632. }
  633. int NCDVal_ListRead (NCDValRef list, int num, ...)
  634. {
  635. ASSERT(NCDVal_IsList(list))
  636. ASSERT(num >= 0)
  637. size_t count = NCDVal_ListCount(list);
  638. if (num != count) {
  639. return 0;
  640. }
  641. va_list ap;
  642. va_start(ap, num);
  643. for (int i = 0; i < num; i++) {
  644. NCDValRef *dest = va_arg(ap, NCDValRef *);
  645. *dest = NCDVal_ListGet(list, i);
  646. }
  647. va_end(ap);
  648. return 1;
  649. }
  650. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  651. {
  652. ASSERT(NCDVal_IsList(list))
  653. ASSERT(num >= 0)
  654. size_t count = NCDVal_ListCount(list);
  655. if (num > count) {
  656. return 0;
  657. }
  658. va_list ap;
  659. va_start(ap, num);
  660. for (int i = 0; i < num; i++) {
  661. NCDValRef *dest = va_arg(ap, NCDValRef *);
  662. *dest = NCDVal_ListGet(list, i);
  663. }
  664. va_end(ap);
  665. return 1;
  666. }
  667. int NCDVal_IsMap (NCDValRef val)
  668. {
  669. NCDVal__AssertVal(val);
  670. return NCDVal_Type(val) == NCDVAL_MAP;
  671. }
  672. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  673. {
  674. NCDVal__AssertMem(mem);
  675. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__map)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(struct NCDVal__mapelem))));
  676. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  677. if (idx < 0) {
  678. goto fail;
  679. }
  680. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  681. map_e->type = NCDVAL_MAP;
  682. map_e->maxcount = maxcount;
  683. map_e->count = 0;
  684. NCDVal__MapTree_Init(&map_e->tree);
  685. return NCDVal__Ref(mem, idx);
  686. fail:
  687. return NCDVal_NewInvalid();
  688. }
  689. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val)
  690. {
  691. ASSERT(NCDVal_IsMap(map))
  692. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  693. ASSERT(key.mem == map.mem)
  694. ASSERT(val.mem == map.mem)
  695. NCDVal__AssertValOnly(map.mem, key.idx);
  696. NCDVal__AssertValOnly(map.mem, val.idx);
  697. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  698. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  699. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  700. ASSERT(me_e == &map_e->elems[map_e->count])
  701. me_e->key_idx = key.idx;
  702. me_e->val_idx = val.idx;
  703. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  704. if (!res) {
  705. return 0;
  706. }
  707. map_e->count++;
  708. return 1;
  709. }
  710. size_t NCDVal_MapCount (NCDValRef map)
  711. {
  712. ASSERT(NCDVal_IsMap(map))
  713. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  714. return map_e->count;
  715. }
  716. size_t NCDVal_MapMaxCount (NCDValRef map)
  717. {
  718. ASSERT(NCDVal_IsMap(map))
  719. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  720. return map_e->maxcount;
  721. }
  722. int NCDVal_MapElemInvalid (NCDValMapElem me)
  723. {
  724. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  725. return me.elemidx < 0;
  726. }
  727. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  728. {
  729. ASSERT(NCDVal_IsMap(map))
  730. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  731. if (map_e->count == 0) {
  732. return NCDVal__MapElem(-1);
  733. }
  734. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  735. NCDVal__MapAssertElemOnly(map, elemidx);
  736. return NCDVal__MapElem(elemidx);
  737. }
  738. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  739. {
  740. NCDVal__MapAssertElem(map, me);
  741. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  742. ASSERT(map_e->count > 0)
  743. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  744. ASSERT(me.elemidx <= last_elemidx)
  745. if (me.elemidx == last_elemidx) {
  746. return NCDVal__MapElem(-1);
  747. }
  748. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  749. NCDVal__MapAssertElemOnly(map, elemidx);
  750. return NCDVal__MapElem(elemidx);
  751. }
  752. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  753. {
  754. ASSERT(NCDVal_IsMap(map))
  755. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  756. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  757. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  758. return NCDVal__MapElem(ref.link);
  759. }
  760. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  761. {
  762. NCDVal__MapAssertElem(map, me);
  763. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  764. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  765. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  766. return NCDVal__MapElem(ref.link);
  767. }
  768. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  769. {
  770. NCDVal__MapAssertElem(map, me);
  771. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  772. return NCDVal__Ref(map.mem, me_e->key_idx);
  773. }
  774. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  775. {
  776. NCDVal__MapAssertElem(map, me);
  777. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  778. return NCDVal__Ref(map.mem, me_e->val_idx);
  779. }
  780. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  781. {
  782. ASSERT(NCDVal_IsMap(map))
  783. NCDVal__AssertVal(key);
  784. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  785. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  786. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  787. return NCDVal__MapElem(ref.link);
  788. }
  789. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  790. {
  791. ASSERT(idx >= 0)
  792. NCDVal__AssertValOnly(mem, idx);
  793. ASSERT(out_num_instr)
  794. *out_num_instr = 0;
  795. void *ptr = NCDValMem__BufAt(mem, idx);
  796. struct NCDVal__instr instr;
  797. switch (*((int *)(ptr))) {
  798. case NCDVAL_STRING:
  799. case IDSTRING_TYPE: {
  800. } break;
  801. case NCDVAL_LIST: {
  802. struct NCDVal__list *list_e = ptr;
  803. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  804. if (list_e->elem_indices[i] < -1) {
  805. if (prog) {
  806. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  807. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  808. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  809. prog->instrs[prog->num_instrs++] = instr;
  810. }
  811. (*out_num_instr)++;
  812. } else {
  813. size_t elem_num_instr;
  814. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  815. (*out_num_instr) += elem_num_instr;
  816. }
  817. }
  818. } break;
  819. case NCDVAL_MAP: {
  820. struct NCDVal__map *map_e = ptr;
  821. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  822. int need_reinsert = 0;
  823. if (map_e->elems[i].key_idx < -1) {
  824. if (prog) {
  825. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  826. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  827. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  828. prog->instrs[prog->num_instrs++] = instr;
  829. }
  830. (*out_num_instr)++;
  831. need_reinsert = 1;
  832. } else {
  833. size_t key_num_instr;
  834. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  835. (*out_num_instr) += key_num_instr;
  836. if (key_num_instr > 0) {
  837. need_reinsert = 1;
  838. }
  839. }
  840. if (map_e->elems[i].val_idx < -1) {
  841. if (prog) {
  842. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  843. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  844. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  845. prog->instrs[prog->num_instrs++] = instr;
  846. }
  847. (*out_num_instr)++;
  848. } else {
  849. size_t val_num_instr;
  850. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  851. (*out_num_instr) += val_num_instr;
  852. }
  853. if (need_reinsert) {
  854. if (prog) {
  855. instr.type = NCDVAL_INSTR_REINSERT;
  856. instr.reinsert.mapidx = idx;
  857. instr.reinsert.elempos = i;
  858. prog->instrs[prog->num_instrs++] = instr;
  859. }
  860. (*out_num_instr)++;
  861. }
  862. }
  863. } break;
  864. default: ASSERT(0);
  865. }
  866. }
  867. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  868. {
  869. NCDVal__AssertVal(val);
  870. ASSERT(!NCDVal_IsPlaceholder(val))
  871. size_t num_instrs;
  872. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  873. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  874. BLog(BLOG_ERROR, "BAllocArray failed");
  875. return 0;
  876. }
  877. o->num_instrs = 0;
  878. size_t num_instrs2;
  879. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  880. ASSERT(num_instrs2 == num_instrs)
  881. ASSERT(o->num_instrs == num_instrs)
  882. return 1;
  883. }
  884. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  885. {
  886. BFree(o->instrs);
  887. }
  888. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  889. {
  890. NCDVal__AssertMem(mem);
  891. ASSERT(replace)
  892. for (size_t i = 0; i < prog.num_instrs; i++) {
  893. struct NCDVal__instr instr = prog.instrs[i];
  894. if (instr.type == NCDVAL_INSTR_PLACEHOLDER) {
  895. #ifndef NDEBUG
  896. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  897. ASSERT(*check_plptr < -1)
  898. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  899. #endif
  900. NCDValRef repval;
  901. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  902. return 0;
  903. }
  904. ASSERT(repval.mem == mem)
  905. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  906. *plptr = repval.idx;
  907. } else {
  908. ASSERT(instr.type == NCDVAL_INSTR_REINSERT)
  909. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  910. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  911. ASSERT(map_e->type == NCDVAL_MAP)
  912. ASSERT(instr.reinsert.elempos >= 0)
  913. ASSERT(instr.reinsert.elempos < map_e->count)
  914. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  915. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  916. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  917. BLog(BLOG_ERROR, "duplicate key in map");
  918. return 0;
  919. }
  920. }
  921. }
  922. return 1;
  923. }