NCDVal.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/balloc.h>
  35. #include <misc/strdup.h>
  36. #include <misc/offset.h>
  37. #include <structure/CAvl.h>
  38. #include <base/BLog.h>
  39. #include "NCDVal.h"
  40. #include <generated/blog_channel_NCDVal.h>
  41. #define NCDVAL_FIRST_SIZE 256
  42. #define NCDVAL_MAX_DEPTH 32
  43. #define TYPE_MASK_EXTERNAL_TYPE ((1 << 3) - 1)
  44. #define TYPE_MASK_INTERNAL_TYPE ((1 << 5) - 1)
  45. #define TYPE_SHIFT_DEPTH 5
  46. #define STOREDSTRING_TYPE (NCDVAL_STRING | (0 << 3))
  47. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  48. #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3))
  49. #define NCDVAL_INSTR_PLACEHOLDER 0
  50. #define NCDVAL_INSTR_REINSERT 1
  51. #define NCDVAL_INSTR_BUMPDEPTH 2
  52. struct NCDVal__ref {
  53. NCDVal__idx next;
  54. BRefTarget *target;
  55. };
  56. struct NCDVal__string {
  57. int type;
  58. NCDVal__idx length;
  59. char data[];
  60. };
  61. struct NCDVal__list {
  62. int type;
  63. NCDVal__idx maxcount;
  64. NCDVal__idx count;
  65. NCDVal__idx elem_indices[];
  66. };
  67. struct NCDVal__mapelem {
  68. NCDVal__idx key_idx;
  69. NCDVal__idx val_idx;
  70. NCDVal__idx tree_child[2];
  71. NCDVal__idx tree_parent;
  72. int8_t tree_balance;
  73. };
  74. struct NCDVal__idstring {
  75. int type;
  76. NCD_string_id_t string_id;
  77. NCDStringIndex *string_index;
  78. };
  79. struct NCDVal__externalstring {
  80. int type;
  81. const char *data;
  82. size_t length;
  83. struct NCDVal__ref ref;
  84. };
  85. typedef struct NCDVal__mapelem NCDVal__maptree_entry;
  86. typedef NCDValMem *NCDVal__maptree_arg;
  87. #include "NCDVal_maptree.h"
  88. #include <structure/CAvl_decl.h>
  89. struct NCDVal__map {
  90. int type;
  91. NCDVal__idx maxcount;
  92. NCDVal__idx count;
  93. NCDVal__MapTree tree;
  94. struct NCDVal__mapelem elems[];
  95. };
  96. struct NCDVal__instr {
  97. int type;
  98. union {
  99. struct {
  100. NCDVal__idx plid;
  101. NCDVal__idx plidx;
  102. } placeholder;
  103. struct {
  104. NCDVal__idx mapidx;
  105. NCDVal__idx elempos;
  106. } reinsert;
  107. struct {
  108. NCDVal__idx parent_idx;
  109. NCDVal__idx child_idx_idx;
  110. } bumpdepth;
  111. };
  112. };
  113. static int make_type (int internal_type, int depth)
  114. {
  115. ASSERT(internal_type == NCDVAL_LIST ||
  116. internal_type == NCDVAL_MAP ||
  117. internal_type == STOREDSTRING_TYPE ||
  118. internal_type == IDSTRING_TYPE ||
  119. internal_type == EXTERNALSTRING_TYPE)
  120. ASSERT(depth >= 0)
  121. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  122. return (internal_type | (depth << TYPE_SHIFT_DEPTH));
  123. }
  124. static int get_external_type (int type)
  125. {
  126. return (type & TYPE_MASK_EXTERNAL_TYPE);
  127. }
  128. static int get_internal_type (int type)
  129. {
  130. return (type & TYPE_MASK_INTERNAL_TYPE);
  131. }
  132. static int get_depth (int type)
  133. {
  134. return (type >> TYPE_SHIFT_DEPTH);
  135. }
  136. static int bump_depth (int *type_ptr, int elem_depth)
  137. {
  138. if (get_depth(*type_ptr) < elem_depth + 1) {
  139. if (elem_depth + 1 > NCDVAL_MAX_DEPTH) {
  140. return 0;
  141. }
  142. *type_ptr = make_type(get_internal_type(*type_ptr), elem_depth + 1);
  143. }
  144. return 1;
  145. }
  146. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  147. {
  148. ASSERT(idx >= 0)
  149. ASSERT(idx < o->used)
  150. return (o->buf ? o->buf : o->fastbuf) + idx;
  151. }
  152. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, NCDVal__idx alloc_size, NCDVal__idx align)
  153. {
  154. NCDVal__idx mod = o->used % align;
  155. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  156. if (alloc_size > NCDVAL_MAXIDX - align_extra) {
  157. return -1;
  158. }
  159. NCDVal__idx aligned_alloc_size = align_extra + alloc_size;
  160. if (aligned_alloc_size > o->size - o->used) {
  161. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  162. while (aligned_alloc_size > newsize - o->used) {
  163. if (newsize > NCDVAL_MAXIDX / 2) {
  164. return -1;
  165. }
  166. newsize *= 2;
  167. }
  168. char *newbuf;
  169. if (!o->buf) {
  170. newbuf = malloc(newsize);
  171. if (!newbuf) {
  172. return -1;
  173. }
  174. memcpy(newbuf, o->fastbuf, o->used);
  175. } else {
  176. newbuf = realloc(o->buf, newsize);
  177. if (!newbuf) {
  178. return -1;
  179. }
  180. }
  181. o->buf = newbuf;
  182. o->size = newsize;
  183. }
  184. NCDVal__idx idx = o->used + align_extra;
  185. o->used += aligned_alloc_size;
  186. return idx;
  187. }
  188. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  189. {
  190. ASSERT(idx == -1 || mem)
  191. NCDValRef ref = {mem, idx};
  192. return ref;
  193. }
  194. static void NCDVal__AssertMem (NCDValMem *mem)
  195. {
  196. ASSERT(mem)
  197. ASSERT(mem->size >= 0)
  198. ASSERT(mem->used >= 0)
  199. ASSERT(mem->used <= mem->size)
  200. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  201. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  202. }
  203. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  204. {
  205. #ifndef NDEBUG
  206. const char *e_cbuf = e_buf;
  207. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  208. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  209. #endif
  210. }
  211. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  212. {
  213. // placeholders
  214. if (idx < -1) {
  215. return;
  216. }
  217. ASSERT(idx >= 0)
  218. ASSERT(idx + sizeof(int) <= mem->used)
  219. #ifndef NDEBUG
  220. int *type_ptr = NCDValMem__BufAt(mem, idx);
  221. ASSERT(get_depth(*type_ptr) >= 0)
  222. ASSERT(get_depth(*type_ptr) <= NCDVAL_MAX_DEPTH)
  223. switch (get_internal_type(*type_ptr)) {
  224. case STOREDSTRING_TYPE: {
  225. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  226. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  227. ASSERT(str_e->length >= 0)
  228. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  229. } break;
  230. case NCDVAL_LIST: {
  231. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  232. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  233. ASSERT(list_e->maxcount >= 0)
  234. ASSERT(list_e->count >= 0)
  235. ASSERT(list_e->count <= list_e->maxcount)
  236. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  237. } break;
  238. case NCDVAL_MAP: {
  239. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  240. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  241. ASSERT(map_e->maxcount >= 0)
  242. ASSERT(map_e->count >= 0)
  243. ASSERT(map_e->count <= map_e->maxcount)
  244. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  245. } break;
  246. case IDSTRING_TYPE: {
  247. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  248. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  249. ASSERT(ids_e->string_id >= 0)
  250. ASSERT(ids_e->string_index)
  251. } break;
  252. case EXTERNALSTRING_TYPE: {
  253. ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used)
  254. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  255. ASSERT(exs_e->data)
  256. ASSERT(!exs_e->ref.target || exs_e->ref.next >= -1)
  257. ASSERT(!exs_e->ref.target || exs_e->ref.next < mem->used)
  258. } break;
  259. default: ASSERT(0);
  260. }
  261. #endif
  262. }
  263. static void NCDVal__AssertVal (NCDValRef val)
  264. {
  265. NCDVal__AssertMem(val.mem);
  266. NCDVal__AssertValOnly(val.mem, val.idx);
  267. }
  268. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  269. {
  270. ASSERT(elemidx >= 0 || elemidx == -1)
  271. NCDValMapElem me = {elemidx};
  272. return me;
  273. }
  274. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  275. {
  276. #ifndef NDEBUG
  277. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  278. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  279. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  280. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  281. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  282. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  283. #endif
  284. }
  285. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  286. {
  287. ASSERT(NCDVal_IsMap(map))
  288. NCDVal__MapAssertElemOnly(map, me.elemidx);
  289. }
  290. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  291. {
  292. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  293. }
  294. static int NCDVal__Depth (NCDValRef val)
  295. {
  296. ASSERT(val.idx != -1)
  297. // handle placeholders
  298. if (val.idx < 0) {
  299. return 0;
  300. }
  301. int *elem_type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  302. int depth = get_depth(*elem_type_ptr);
  303. ASSERT(depth >= 0)
  304. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  305. return depth;
  306. }
  307. static void NCDValMem__RegisterRef (NCDValMem *o, NCDVal__idx refidx, struct NCDVal__ref *ref)
  308. {
  309. ASSERT(ref == NCDValMem__BufAt(o, refidx))
  310. ASSERT(ref->target)
  311. ref->next = o->first_ref;
  312. o->first_ref = refidx;
  313. }
  314. #include "NCDVal_maptree.h"
  315. #include <structure/CAvl_impl.h>
  316. void NCDValMem_Init (NCDValMem *o)
  317. {
  318. o->buf = NULL;
  319. o->size = NCDVAL_FASTBUF_SIZE;
  320. o->used = 0;
  321. o->first_ref = -1;
  322. }
  323. void NCDValMem_Free (NCDValMem *o)
  324. {
  325. NCDVal__AssertMem(o);
  326. NCDVal__idx refidx = o->first_ref;
  327. while (refidx != -1) {
  328. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  329. ASSERT(ref->target)
  330. BRefTarget_Deref(ref->target);
  331. refidx = ref->next;
  332. }
  333. if (o->buf) {
  334. BFree(o->buf);
  335. }
  336. }
  337. int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other)
  338. {
  339. NCDVal__AssertMem(other);
  340. o->size = other->size;
  341. o->used = other->used;
  342. o->first_ref = other->first_ref;
  343. if (!other->buf) {
  344. o->buf = NULL;
  345. memcpy(o->fastbuf, other->fastbuf, other->used);
  346. } else {
  347. o->buf = BAlloc(other->size);
  348. if (!o->buf) {
  349. goto fail0;
  350. }
  351. memcpy(o->buf, other->buf, other->used);
  352. }
  353. NCDVal__idx refidx = o->first_ref;
  354. while (refidx != -1) {
  355. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  356. ASSERT(ref->target)
  357. if (!BRefTarget_Ref(ref->target)) {
  358. goto fail1;
  359. }
  360. refidx = ref->next;
  361. }
  362. return 1;
  363. fail1:;
  364. NCDVal__idx undo_refidx = o->first_ref;
  365. while (undo_refidx != refidx) {
  366. struct NCDVal__ref *ref = NCDValMem__BufAt(o, undo_refidx);
  367. BRefTarget_Deref(ref->target);
  368. undo_refidx = ref->next;
  369. }
  370. if (o->buf) {
  371. BFree(o->buf);
  372. }
  373. fail0:
  374. return 0;
  375. }
  376. void NCDVal_Assert (NCDValRef val)
  377. {
  378. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  379. }
  380. int NCDVal_IsInvalid (NCDValRef val)
  381. {
  382. NCDVal_Assert(val);
  383. return (val.idx == -1);
  384. }
  385. int NCDVal_IsPlaceholder (NCDValRef val)
  386. {
  387. NCDVal_Assert(val);
  388. return (val.idx < -1);
  389. }
  390. int NCDVal_Type (NCDValRef val)
  391. {
  392. NCDVal__AssertVal(val);
  393. if (val.idx < -1) {
  394. return NCDVAL_PLACEHOLDER;
  395. }
  396. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  397. return get_external_type(*type_ptr);
  398. }
  399. NCDValRef NCDVal_NewInvalid (void)
  400. {
  401. NCDValRef ref = {NULL, -1};
  402. return ref;
  403. }
  404. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  405. {
  406. NCDVal__AssertMem(mem);
  407. ASSERT(plid >= 0)
  408. ASSERT(plid < NCDVAL_TOPPLID)
  409. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  410. return ref;
  411. }
  412. int NCDVal_PlaceholderId (NCDValRef val)
  413. {
  414. ASSERT(NCDVal_IsPlaceholder(val))
  415. return (val.idx - NCDVAL_MINIDX);
  416. }
  417. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  418. {
  419. NCDVal__AssertMem(mem);
  420. NCDVal__AssertVal(val);
  421. if (val.idx < -1) {
  422. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  423. }
  424. void *ptr = NCDValMem__BufAt(val.mem, val.idx);
  425. switch (get_internal_type(*(int *)ptr)) {
  426. case STOREDSTRING_TYPE: {
  427. struct NCDVal__string *str_e = ptr;
  428. NCDVal__idx size = sizeof(struct NCDVal__string) + str_e->length + 1;
  429. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  430. if (idx < 0) {
  431. goto fail;
  432. }
  433. str_e = NCDValMem__BufAt(val.mem, val.idx);
  434. struct NCDVal__string *new_str_e = NCDValMem__BufAt(mem, idx);
  435. memcpy(new_str_e, str_e, size);
  436. return NCDVal__Ref(mem, idx);
  437. } break;
  438. case NCDVAL_LIST: {
  439. struct NCDVal__list *list_e = ptr;
  440. NCDVal__idx size = sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx);
  441. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  442. if (idx < 0) {
  443. goto fail;
  444. }
  445. list_e = NCDValMem__BufAt(val.mem, val.idx);
  446. struct NCDVal__list *new_list_e = NCDValMem__BufAt(mem, idx);
  447. *new_list_e = *list_e;
  448. NCDVal__idx count = list_e->count;
  449. for (NCDVal__idx i = 0; i < count; i++) {
  450. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal__Ref(val.mem, list_e->elem_indices[i]));
  451. if (NCDVal_IsInvalid(elem_copy)) {
  452. goto fail;
  453. }
  454. list_e = NCDValMem__BufAt(val.mem, val.idx);
  455. new_list_e = NCDValMem__BufAt(mem, idx);
  456. new_list_e->elem_indices[i] = elem_copy.idx;
  457. }
  458. return NCDVal__Ref(mem, idx);
  459. } break;
  460. case NCDVAL_MAP: {
  461. size_t count = NCDVal_MapCount(val);
  462. NCDValRef copy = NCDVal_NewMap(mem, count);
  463. if (NCDVal_IsInvalid(copy)) {
  464. goto fail;
  465. }
  466. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  467. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  468. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  469. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  470. goto fail;
  471. }
  472. int inserted;
  473. if (!NCDVal_MapInsert(copy, key_copy, val_copy, &inserted)) {
  474. goto fail;
  475. }
  476. ASSERT_EXECUTE(inserted)
  477. }
  478. return copy;
  479. } break;
  480. case IDSTRING_TYPE: {
  481. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  482. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  483. if (idx < 0) {
  484. goto fail;
  485. }
  486. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(val.mem, val.idx);
  487. struct NCDVal__idstring *new_ids_e = NCDValMem__BufAt(mem, idx);
  488. *new_ids_e = *ids_e;
  489. return NCDVal__Ref(mem, idx);
  490. } break;
  491. case EXTERNALSTRING_TYPE: {
  492. struct NCDVal__externalstring *exs_e = ptr;
  493. return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target);
  494. } break;
  495. default: ASSERT(0);
  496. }
  497. ASSERT(0);
  498. fail:
  499. return NCDVal_NewInvalid();
  500. }
  501. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  502. {
  503. NCDVal__AssertVal(val1);
  504. NCDVal__AssertVal(val2);
  505. int type1 = NCDVal_Type(val1);
  506. int type2 = NCDVal_Type(val2);
  507. if (type1 != type2) {
  508. return (type1 > type2) - (type1 < type2);
  509. }
  510. switch (type1) {
  511. case NCDVAL_STRING: {
  512. size_t len1 = NCDVal_StringLength(val1);
  513. size_t len2 = NCDVal_StringLength(val2);
  514. size_t min_len = len1 < len2 ? len1 : len2;
  515. int cmp = NCDVal_StringMemCmp(val1, val2, 0, 0, min_len);
  516. if (cmp) {
  517. return (cmp > 0) - (cmp < 0);
  518. }
  519. return (len1 > len2) - (len1 < len2);
  520. } break;
  521. case NCDVAL_LIST: {
  522. size_t count1 = NCDVal_ListCount(val1);
  523. size_t count2 = NCDVal_ListCount(val2);
  524. size_t min_count = count1 < count2 ? count1 : count2;
  525. for (size_t i = 0; i < min_count; i++) {
  526. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  527. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  528. int cmp = NCDVal_Compare(ev1, ev2);
  529. if (cmp) {
  530. return cmp;
  531. }
  532. }
  533. return (count1 > count2) - (count1 < count2);
  534. } break;
  535. case NCDVAL_MAP: {
  536. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  537. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  538. while (1) {
  539. int inv1 = NCDVal_MapElemInvalid(e1);
  540. int inv2 = NCDVal_MapElemInvalid(e2);
  541. if (inv1 || inv2) {
  542. return inv2 - inv1;
  543. }
  544. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  545. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  546. int cmp = NCDVal_Compare(key1, key2);
  547. if (cmp) {
  548. return cmp;
  549. }
  550. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  551. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  552. cmp = NCDVal_Compare(value1, value2);
  553. if (cmp) {
  554. return cmp;
  555. }
  556. e1 = NCDVal_MapOrderedNext(val1, e1);
  557. e2 = NCDVal_MapOrderedNext(val2, e2);
  558. }
  559. } break;
  560. case NCDVAL_PLACEHOLDER: {
  561. int plid1 = NCDVal_PlaceholderId(val1);
  562. int plid2 = NCDVal_PlaceholderId(val2);
  563. return (plid1 > plid2) - (plid1 < plid2);
  564. } break;
  565. default:
  566. ASSERT(0);
  567. return 0;
  568. }
  569. }
  570. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  571. {
  572. NCDVal_Assert(val);
  573. NCDValSafeRef sval = {val.idx};
  574. return sval;
  575. }
  576. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  577. {
  578. NCDVal__AssertMem(mem);
  579. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  580. NCDValRef val = {mem, sval.idx};
  581. return val;
  582. }
  583. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  584. {
  585. NCDVal__AssertMem(mem);
  586. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  587. NCDValRef val2 = {mem, val.idx};
  588. return val2;
  589. }
  590. int NCDVal_IsSafeRefPlaceholder (NCDValSafeRef sval)
  591. {
  592. return (sval.idx < -1);
  593. }
  594. int NCDVal_GetSafeRefPlaceholderId (NCDValSafeRef sval)
  595. {
  596. ASSERT(NCDVal_IsSafeRefPlaceholder(sval))
  597. return (sval.idx - NCDVAL_MINIDX);
  598. }
  599. int NCDVal_IsString (NCDValRef val)
  600. {
  601. NCDVal__AssertVal(val);
  602. return NCDVal_Type(val) == NCDVAL_STRING;
  603. }
  604. int NCDVal_IsStoredString (NCDValRef val)
  605. {
  606. NCDVal__AssertVal(val);
  607. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == STOREDSTRING_TYPE;
  608. }
  609. int NCDVal_IsIdString (NCDValRef val)
  610. {
  611. NCDVal__AssertVal(val);
  612. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == IDSTRING_TYPE;
  613. }
  614. int NCDVal_IsExternalString (NCDValRef val)
  615. {
  616. NCDVal__AssertVal(val);
  617. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == EXTERNALSTRING_TYPE;
  618. }
  619. int NCDVal_IsStringNoNulls (NCDValRef val)
  620. {
  621. NCDVal__AssertVal(val);
  622. return NCDVal_Type(val) == NCDVAL_STRING && !NCDVal_StringHasNulls(val);
  623. }
  624. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  625. {
  626. NCDVal__AssertMem(mem);
  627. ASSERT(data)
  628. NCDVal_AssertExternal(mem, data, strlen(data));
  629. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  630. }
  631. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  632. {
  633. NCDVal__AssertMem(mem);
  634. ASSERT(len == 0 || data)
  635. NCDVal_AssertExternal(mem, data, len);
  636. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  637. goto fail;
  638. }
  639. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  640. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  641. if (idx < 0) {
  642. goto fail;
  643. }
  644. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  645. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  646. str_e->length = len;
  647. if (len > 0) {
  648. memcpy(str_e->data, data, len);
  649. }
  650. str_e->data[len] = '\0';
  651. return NCDVal__Ref(mem, idx);
  652. fail:
  653. return NCDVal_NewInvalid();
  654. }
  655. NCDValRef NCDVal_NewStringBinMr (NCDValMem *mem, MemRef data)
  656. {
  657. return NCDVal_NewStringBin(mem, (uint8_t const *)data.ptr, data.len);
  658. }
  659. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  660. {
  661. NCDVal__AssertMem(mem);
  662. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  663. goto fail;
  664. }
  665. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  666. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  667. if (idx < 0) {
  668. goto fail;
  669. }
  670. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  671. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  672. str_e->length = len;
  673. str_e->data[len] = '\0';
  674. return NCDVal__Ref(mem, idx);
  675. fail:
  676. return NCDVal_NewInvalid();
  677. }
  678. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index)
  679. {
  680. NCDVal__AssertMem(mem);
  681. ASSERT(string_id >= 0)
  682. ASSERT(string_index)
  683. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  684. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  685. if (idx < 0) {
  686. goto fail;
  687. }
  688. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  689. ids_e->type = make_type(IDSTRING_TYPE, 0);
  690. ids_e->string_id = string_id;
  691. ids_e->string_index = string_index;
  692. return NCDVal__Ref(mem, idx);
  693. fail:
  694. return NCDVal_NewInvalid();
  695. }
  696. NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len,
  697. BRefTarget *ref_target)
  698. {
  699. NCDVal__AssertMem(mem);
  700. ASSERT(data)
  701. NCDVal_AssertExternal(mem, data, len);
  702. NCDVal__idx size = sizeof(struct NCDVal__externalstring);
  703. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__externalstring));
  704. if (idx < 0) {
  705. goto fail;
  706. }
  707. if (ref_target) {
  708. if (!BRefTarget_Ref(ref_target)) {
  709. goto fail;
  710. }
  711. }
  712. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  713. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  714. exs_e->data = data;
  715. exs_e->length = len;
  716. exs_e->ref.target = ref_target;
  717. if (ref_target) {
  718. NCDValMem__RegisterRef(mem, idx + offsetof(struct NCDVal__externalstring, ref), &exs_e->ref);
  719. }
  720. return NCDVal__Ref(mem, idx);
  721. fail:
  722. return NCDVal_NewInvalid();
  723. }
  724. const char * NCDVal_StringData (NCDValRef string)
  725. {
  726. ASSERT(NCDVal_IsString(string))
  727. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  728. switch (get_internal_type(*(int *)ptr)) {
  729. case STOREDSTRING_TYPE: {
  730. struct NCDVal__string *str_e = ptr;
  731. return str_e->data;
  732. } break;
  733. case IDSTRING_TYPE: {
  734. struct NCDVal__idstring *ids_e = ptr;
  735. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  736. return value;
  737. } break;
  738. case EXTERNALSTRING_TYPE: {
  739. struct NCDVal__externalstring *exs_e = ptr;
  740. return exs_e->data;
  741. } break;
  742. default:
  743. ASSERT(0);
  744. return NULL;
  745. }
  746. }
  747. size_t NCDVal_StringLength (NCDValRef string)
  748. {
  749. ASSERT(NCDVal_IsString(string))
  750. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  751. switch (get_internal_type(*(int *)ptr)) {
  752. case STOREDSTRING_TYPE: {
  753. struct NCDVal__string *str_e = ptr;
  754. return str_e->length;
  755. } break;
  756. case IDSTRING_TYPE: {
  757. struct NCDVal__idstring *ids_e = ptr;
  758. return NCDStringIndex_Length(ids_e->string_index, ids_e->string_id);
  759. } break;
  760. case EXTERNALSTRING_TYPE: {
  761. struct NCDVal__externalstring *exs_e = ptr;
  762. return exs_e->length;
  763. } break;
  764. default:
  765. ASSERT(0);
  766. return 0;
  767. }
  768. }
  769. MemRef NCDVal_StringMemRef (NCDValRef string)
  770. {
  771. ASSERT(NCDVal_IsString(string))
  772. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  773. switch (get_internal_type(*(int *)ptr)) {
  774. case STOREDSTRING_TYPE: {
  775. struct NCDVal__string *str_e = ptr;
  776. return MemRef_Make(str_e->data, str_e->length);
  777. } break;
  778. case IDSTRING_TYPE: {
  779. struct NCDVal__idstring *ids_e = ptr;
  780. return MemRef_Make(NCDStringIndex_Value(ids_e->string_index, ids_e->string_id), NCDStringIndex_Length(ids_e->string_index, ids_e->string_id));
  781. } break;
  782. case EXTERNALSTRING_TYPE: {
  783. struct NCDVal__externalstring *exs_e = ptr;
  784. return MemRef_Make(exs_e->data, exs_e->length);
  785. } break;
  786. default: {
  787. ASSERT(0);
  788. return MemRef_Make(NULL, 0);
  789. } break;
  790. }
  791. }
  792. int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out)
  793. {
  794. ASSERT(NCDVal_IsString(string))
  795. ASSERT(out)
  796. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  797. switch (get_internal_type(*(int *)ptr)) {
  798. case STOREDSTRING_TYPE: {
  799. struct NCDVal__string *str_e = ptr;
  800. out->data = str_e->data;
  801. out->is_allocated = 0;
  802. return 1;
  803. } break;
  804. case IDSTRING_TYPE: {
  805. struct NCDVal__idstring *ids_e = ptr;
  806. out->data = (char *)NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  807. out->is_allocated = 0;
  808. return 1;
  809. } break;
  810. case EXTERNALSTRING_TYPE: {
  811. struct NCDVal__externalstring *exs_e = ptr;
  812. char *copy = b_strdup_bin(exs_e->data, exs_e->length);
  813. if (!copy) {
  814. return 0;
  815. }
  816. out->data = copy;
  817. out->is_allocated = 1;
  818. return 1;
  819. } break;
  820. default:
  821. ASSERT(0);
  822. return 0;
  823. }
  824. }
  825. NCDValNullTermString NCDValNullTermString_NewDummy (void)
  826. {
  827. NCDValNullTermString nts;
  828. nts.data = NULL;
  829. nts.is_allocated = 0;
  830. return nts;
  831. }
  832. void NCDValNullTermString_Free (NCDValNullTermString *o)
  833. {
  834. if (o->is_allocated) {
  835. BFree(o->data);
  836. }
  837. }
  838. void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id,
  839. NCDStringIndex **out_string_index)
  840. {
  841. ASSERT(NCDVal_IsIdString(idstring))
  842. ASSERT(out_string_id)
  843. ASSERT(out_string_index)
  844. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  845. *out_string_id = ids_e->string_id;
  846. *out_string_index = ids_e->string_index;
  847. }
  848. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  849. {
  850. ASSERT(NCDVal_IsIdString(idstring))
  851. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  852. return ids_e->string_id;
  853. }
  854. NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring)
  855. {
  856. ASSERT(NCDVal_IsIdString(idstring))
  857. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  858. return ids_e->string_index;
  859. }
  860. BRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring)
  861. {
  862. ASSERT(NCDVal_IsExternalString(externalstring))
  863. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(externalstring.mem, externalstring.idx);
  864. return exs_e->ref.target;
  865. }
  866. int NCDVal_StringHasNulls (NCDValRef string)
  867. {
  868. ASSERT(NCDVal_IsString(string))
  869. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  870. switch (get_internal_type(*(int *)ptr)) {
  871. case IDSTRING_TYPE: {
  872. struct NCDVal__idstring *ids_e = ptr;
  873. return NCDStringIndex_HasNulls(ids_e->string_index, ids_e->string_id);
  874. } break;
  875. case STOREDSTRING_TYPE:
  876. case EXTERNALSTRING_TYPE: {
  877. const char *data = NCDVal_StringData(string);
  878. size_t length = NCDVal_StringLength(string);
  879. return !!memchr(data, '\0', length);
  880. } break;
  881. default:
  882. ASSERT(0);
  883. return 0;
  884. }
  885. }
  886. int NCDVal_StringEquals (NCDValRef string, const char *data)
  887. {
  888. ASSERT(NCDVal_IsString(string))
  889. ASSERT(data)
  890. size_t data_len = strlen(data);
  891. return NCDVal_StringLength(string) == data_len && NCDVal_StringRegionEquals(string, 0, data_len, data);
  892. }
  893. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id,
  894. NCDStringIndex *string_index)
  895. {
  896. ASSERT(NCDVal_IsString(string))
  897. ASSERT(string_id >= 0)
  898. ASSERT(string_index)
  899. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  900. switch (get_internal_type(*(int *)ptr)) {
  901. case STOREDSTRING_TYPE: {
  902. struct NCDVal__string *str_e = ptr;
  903. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  904. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  905. return (string_length == str_e->length) && !memcmp(string_data, str_e->data, string_length);
  906. } break;
  907. case IDSTRING_TYPE: {
  908. struct NCDVal__idstring *ids_e = ptr;
  909. ASSERT(ids_e->string_index == string_index)
  910. return ids_e->string_id == string_id;
  911. } break;
  912. case EXTERNALSTRING_TYPE: {
  913. struct NCDVal__externalstring *exs_e = ptr;
  914. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  915. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  916. return (string_length == exs_e->length) && !memcmp(string_data, exs_e->data, string_length);
  917. } break;
  918. default:
  919. ASSERT(0);
  920. return 0;
  921. }
  922. }
  923. int NCDVal_StringMemCmp (NCDValRef string1, NCDValRef string2, size_t start1, size_t start2, size_t length)
  924. {
  925. ASSERT(NCDVal_IsString(string1))
  926. ASSERT(NCDVal_IsString(string2))
  927. ASSERT(start1 <= NCDVal_StringLength(string1))
  928. ASSERT(start2 <= NCDVal_StringLength(string2))
  929. ASSERT(length <= NCDVal_StringLength(string1) - start1)
  930. ASSERT(length <= NCDVal_StringLength(string2) - start2)
  931. return memcmp(NCDVal_StringData(string1) + start1, NCDVal_StringData(string2) + start2, length);
  932. }
  933. void NCDVal_StringCopyOut (NCDValRef string, size_t start, size_t length, char *dst)
  934. {
  935. ASSERT(NCDVal_IsString(string))
  936. ASSERT(start <= NCDVal_StringLength(string))
  937. ASSERT(length <= NCDVal_StringLength(string) - start)
  938. memcpy(dst, NCDVal_StringData(string) + start, length);
  939. }
  940. int NCDVal_StringRegionEquals (NCDValRef string, size_t start, size_t length, const char *data)
  941. {
  942. ASSERT(NCDVal_IsString(string))
  943. ASSERT(start <= NCDVal_StringLength(string))
  944. ASSERT(length <= NCDVal_StringLength(string) - start)
  945. return !memcmp(NCDVal_StringData(string) + start, data, length);
  946. }
  947. int NCDVal_IsList (NCDValRef val)
  948. {
  949. NCDVal__AssertVal(val);
  950. return NCDVal_Type(val) == NCDVAL_LIST;
  951. }
  952. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  953. {
  954. NCDVal__AssertMem(mem);
  955. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__list)) / sizeof(NCDVal__idx)) {
  956. goto fail;
  957. }
  958. NCDVal__idx size = sizeof(struct NCDVal__list) + maxcount * sizeof(NCDVal__idx);
  959. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  960. if (idx < 0) {
  961. goto fail;
  962. }
  963. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  964. list_e->type = make_type(NCDVAL_LIST, 0);
  965. list_e->maxcount = maxcount;
  966. list_e->count = 0;
  967. return NCDVal__Ref(mem, idx);
  968. fail:
  969. return NCDVal_NewInvalid();
  970. }
  971. int NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  972. {
  973. ASSERT(NCDVal_IsList(list))
  974. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  975. ASSERT(elem.mem == list.mem)
  976. NCDVal__AssertValOnly(list.mem, elem.idx);
  977. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  978. int new_type = list_e->type;
  979. if (!bump_depth(&new_type, NCDVal__Depth(elem))) {
  980. return 0;
  981. }
  982. list_e->type = new_type;
  983. list_e->elem_indices[list_e->count++] = elem.idx;
  984. return 1;
  985. }
  986. size_t NCDVal_ListCount (NCDValRef list)
  987. {
  988. ASSERT(NCDVal_IsList(list))
  989. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  990. return list_e->count;
  991. }
  992. size_t NCDVal_ListMaxCount (NCDValRef list)
  993. {
  994. ASSERT(NCDVal_IsList(list))
  995. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  996. return list_e->maxcount;
  997. }
  998. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  999. {
  1000. ASSERT(NCDVal_IsList(list))
  1001. ASSERT(pos < NCDVal_ListCount(list))
  1002. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1003. ASSERT(pos < list_e->count)
  1004. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  1005. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  1006. }
  1007. int NCDVal_ListRead (NCDValRef list, int num, ...)
  1008. {
  1009. ASSERT(NCDVal_IsList(list))
  1010. ASSERT(num >= 0)
  1011. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1012. if (num != list_e->count) {
  1013. return 0;
  1014. }
  1015. va_list ap;
  1016. va_start(ap, num);
  1017. for (int i = 0; i < num; i++) {
  1018. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1019. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1020. }
  1021. va_end(ap);
  1022. return 1;
  1023. }
  1024. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  1025. {
  1026. ASSERT(NCDVal_IsList(list))
  1027. ASSERT(num >= 0)
  1028. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1029. if (num > list_e->count) {
  1030. return 0;
  1031. }
  1032. va_list ap;
  1033. va_start(ap, num);
  1034. for (int i = 0; i < num; i++) {
  1035. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1036. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1037. }
  1038. va_end(ap);
  1039. return 1;
  1040. }
  1041. int NCDVal_IsMap (NCDValRef val)
  1042. {
  1043. NCDVal__AssertVal(val);
  1044. return NCDVal_Type(val) == NCDVAL_MAP;
  1045. }
  1046. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  1047. {
  1048. NCDVal__AssertMem(mem);
  1049. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__map)) / sizeof(struct NCDVal__mapelem)) {
  1050. goto fail;
  1051. }
  1052. NCDVal__idx size = sizeof(struct NCDVal__map) + maxcount * sizeof(struct NCDVal__mapelem);
  1053. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  1054. if (idx < 0) {
  1055. goto fail;
  1056. }
  1057. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  1058. map_e->type = make_type(NCDVAL_MAP, 0);
  1059. map_e->maxcount = maxcount;
  1060. map_e->count = 0;
  1061. NCDVal__MapTree_Init(&map_e->tree);
  1062. return NCDVal__Ref(mem, idx);
  1063. fail:
  1064. return NCDVal_NewInvalid();
  1065. }
  1066. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val, int *out_inserted)
  1067. {
  1068. ASSERT(NCDVal_IsMap(map))
  1069. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  1070. ASSERT(key.mem == map.mem)
  1071. ASSERT(val.mem == map.mem)
  1072. NCDVal__AssertValOnly(map.mem, key.idx);
  1073. NCDVal__AssertValOnly(map.mem, val.idx);
  1074. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1075. int new_type = map_e->type;
  1076. if (!bump_depth(&new_type, NCDVal__Depth(key)) || !bump_depth(&new_type, NCDVal__Depth(val))) {
  1077. goto fail0;
  1078. }
  1079. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  1080. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  1081. ASSERT(me_e == &map_e->elems[map_e->count])
  1082. me_e->key_idx = key.idx;
  1083. me_e->val_idx = val.idx;
  1084. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  1085. if (!res) {
  1086. if (out_inserted) {
  1087. *out_inserted = 0;
  1088. }
  1089. return 1;
  1090. }
  1091. map_e->type = new_type;
  1092. map_e->count++;
  1093. if (out_inserted) {
  1094. *out_inserted = 1;
  1095. }
  1096. return 1;
  1097. fail0:
  1098. return 0;
  1099. }
  1100. size_t NCDVal_MapCount (NCDValRef map)
  1101. {
  1102. ASSERT(NCDVal_IsMap(map))
  1103. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1104. return map_e->count;
  1105. }
  1106. size_t NCDVal_MapMaxCount (NCDValRef map)
  1107. {
  1108. ASSERT(NCDVal_IsMap(map))
  1109. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1110. return map_e->maxcount;
  1111. }
  1112. int NCDVal_MapElemInvalid (NCDValMapElem me)
  1113. {
  1114. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  1115. return me.elemidx < 0;
  1116. }
  1117. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  1118. {
  1119. ASSERT(NCDVal_IsMap(map))
  1120. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1121. if (map_e->count == 0) {
  1122. return NCDVal__MapElem(-1);
  1123. }
  1124. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  1125. NCDVal__MapAssertElemOnly(map, elemidx);
  1126. return NCDVal__MapElem(elemidx);
  1127. }
  1128. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  1129. {
  1130. NCDVal__MapAssertElem(map, me);
  1131. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1132. ASSERT(map_e->count > 0)
  1133. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  1134. ASSERT(me.elemidx <= last_elemidx)
  1135. if (me.elemidx == last_elemidx) {
  1136. return NCDVal__MapElem(-1);
  1137. }
  1138. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  1139. NCDVal__MapAssertElemOnly(map, elemidx);
  1140. return NCDVal__MapElem(elemidx);
  1141. }
  1142. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  1143. {
  1144. ASSERT(NCDVal_IsMap(map))
  1145. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1146. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  1147. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1148. return NCDVal__MapElem(ref.link);
  1149. }
  1150. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  1151. {
  1152. NCDVal__MapAssertElem(map, me);
  1153. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1154. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  1155. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1156. return NCDVal__MapElem(ref.link);
  1157. }
  1158. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  1159. {
  1160. NCDVal__MapAssertElem(map, me);
  1161. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1162. return NCDVal__Ref(map.mem, me_e->key_idx);
  1163. }
  1164. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  1165. {
  1166. NCDVal__MapAssertElem(map, me);
  1167. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1168. return NCDVal__Ref(map.mem, me_e->val_idx);
  1169. }
  1170. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  1171. {
  1172. ASSERT(NCDVal_IsMap(map))
  1173. NCDVal__AssertVal(key);
  1174. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1175. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  1176. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1177. return NCDVal__MapElem(ref.link);
  1178. }
  1179. NCDValRef NCDVal_MapGetValue (NCDValRef map, const char *key_str)
  1180. {
  1181. ASSERT(NCDVal_IsMap(map))
  1182. ASSERT(key_str)
  1183. NCDValMem mem;
  1184. mem.buf = NULL;
  1185. mem.size = NCDVAL_FASTBUF_SIZE;
  1186. mem.used = sizeof(struct NCDVal__externalstring);
  1187. mem.first_ref = -1;
  1188. struct NCDVal__externalstring *exs_e = (void *)mem.fastbuf;
  1189. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  1190. exs_e->data = key_str;
  1191. exs_e->length = strlen(key_str);
  1192. exs_e->ref.target = NULL;
  1193. NCDValRef key = NCDVal__Ref(&mem, 0);
  1194. NCDValMapElem elem = NCDVal_MapFindKey(map, key);
  1195. if (NCDVal_MapElemInvalid(elem)) {
  1196. return NCDVal_NewInvalid();
  1197. }
  1198. return NCDVal_MapElemVal(map, elem);
  1199. }
  1200. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  1201. {
  1202. ASSERT(idx >= 0)
  1203. NCDVal__AssertValOnly(mem, idx);
  1204. ASSERT(out_num_instr)
  1205. *out_num_instr = 0;
  1206. void *ptr = NCDValMem__BufAt(mem, idx);
  1207. struct NCDVal__instr instr;
  1208. switch (get_internal_type(*((int *)(ptr)))) {
  1209. case STOREDSTRING_TYPE:
  1210. case IDSTRING_TYPE:
  1211. case EXTERNALSTRING_TYPE: {
  1212. } break;
  1213. case NCDVAL_LIST: {
  1214. struct NCDVal__list *list_e = ptr;
  1215. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  1216. int elem_changed = 0;
  1217. if (list_e->elem_indices[i] < -1) {
  1218. if (prog) {
  1219. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1220. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  1221. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1222. prog->instrs[prog->num_instrs++] = instr;
  1223. }
  1224. (*out_num_instr)++;
  1225. elem_changed = 1;
  1226. } else {
  1227. size_t elem_num_instr;
  1228. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  1229. (*out_num_instr) += elem_num_instr;
  1230. if (elem_num_instr > 0) {
  1231. elem_changed = 1;
  1232. }
  1233. }
  1234. if (elem_changed) {
  1235. if (prog) {
  1236. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1237. instr.bumpdepth.parent_idx = idx;
  1238. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1239. prog->instrs[prog->num_instrs++] = instr;
  1240. }
  1241. (*out_num_instr)++;
  1242. }
  1243. }
  1244. } break;
  1245. case NCDVAL_MAP: {
  1246. struct NCDVal__map *map_e = ptr;
  1247. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  1248. int key_changed = 0;
  1249. int val_changed = 0;
  1250. if (map_e->elems[i].key_idx < -1) {
  1251. if (prog) {
  1252. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1253. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  1254. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1255. prog->instrs[prog->num_instrs++] = instr;
  1256. }
  1257. (*out_num_instr)++;
  1258. key_changed = 1;
  1259. } else {
  1260. size_t key_num_instr;
  1261. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  1262. (*out_num_instr) += key_num_instr;
  1263. if (key_num_instr > 0) {
  1264. key_changed = 1;
  1265. }
  1266. }
  1267. if (map_e->elems[i].val_idx < -1) {
  1268. if (prog) {
  1269. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1270. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  1271. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1272. prog->instrs[prog->num_instrs++] = instr;
  1273. }
  1274. (*out_num_instr)++;
  1275. val_changed = 1;
  1276. } else {
  1277. size_t val_num_instr;
  1278. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  1279. (*out_num_instr) += val_num_instr;
  1280. if (val_num_instr > 0) {
  1281. val_changed = 1;
  1282. }
  1283. }
  1284. if (key_changed) {
  1285. if (prog) {
  1286. instr.type = NCDVAL_INSTR_REINSERT;
  1287. instr.reinsert.mapidx = idx;
  1288. instr.reinsert.elempos = i;
  1289. prog->instrs[prog->num_instrs++] = instr;
  1290. }
  1291. (*out_num_instr)++;
  1292. if (prog) {
  1293. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1294. instr.bumpdepth.parent_idx = idx;
  1295. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1296. prog->instrs[prog->num_instrs++] = instr;
  1297. }
  1298. (*out_num_instr)++;
  1299. }
  1300. if (val_changed) {
  1301. if (prog) {
  1302. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1303. instr.bumpdepth.parent_idx = idx;
  1304. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1305. prog->instrs[prog->num_instrs++] = instr;
  1306. }
  1307. (*out_num_instr)++;
  1308. }
  1309. }
  1310. } break;
  1311. default: ASSERT(0);
  1312. }
  1313. }
  1314. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  1315. {
  1316. NCDVal__AssertVal(val);
  1317. ASSERT(!NCDVal_IsPlaceholder(val))
  1318. size_t num_instrs;
  1319. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  1320. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  1321. BLog(BLOG_ERROR, "BAllocArray failed");
  1322. return 0;
  1323. }
  1324. o->num_instrs = 0;
  1325. size_t num_instrs2;
  1326. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  1327. ASSERT(num_instrs2 == num_instrs)
  1328. ASSERT(o->num_instrs == num_instrs)
  1329. return 1;
  1330. }
  1331. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  1332. {
  1333. BFree(o->instrs);
  1334. }
  1335. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  1336. {
  1337. NCDVal__AssertMem(mem);
  1338. ASSERT(replace)
  1339. for (size_t i = 0; i < prog.num_instrs; i++) {
  1340. struct NCDVal__instr instr = prog.instrs[i];
  1341. switch (instr.type) {
  1342. case NCDVAL_INSTR_PLACEHOLDER: {
  1343. #ifndef NDEBUG
  1344. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1345. ASSERT(*check_plptr < -1)
  1346. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  1347. #endif
  1348. NCDValRef repval;
  1349. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  1350. return 0;
  1351. }
  1352. ASSERT(repval.mem == mem)
  1353. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1354. *plptr = repval.idx;
  1355. } break;
  1356. case NCDVAL_INSTR_REINSERT: {
  1357. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  1358. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  1359. ASSERT(get_internal_type(map_e->type) == NCDVAL_MAP)
  1360. ASSERT(instr.reinsert.elempos >= 0)
  1361. ASSERT(instr.reinsert.elempos < map_e->count)
  1362. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  1363. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  1364. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  1365. BLog(BLOG_ERROR, "duplicate key in map");
  1366. return 0;
  1367. }
  1368. } break;
  1369. case NCDVAL_INSTR_BUMPDEPTH: {
  1370. NCDVal__AssertValOnly(mem, instr.bumpdepth.parent_idx);
  1371. int *parent_type_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.parent_idx);
  1372. NCDVal__idx *child_type_idx_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.child_idx_idx);
  1373. NCDVal__AssertValOnly(mem, *child_type_idx_ptr);
  1374. int *child_type_ptr = NCDValMem__BufAt(mem, *child_type_idx_ptr);
  1375. if (!bump_depth(parent_type_ptr, get_depth(*child_type_ptr))) {
  1376. BLog(BLOG_ERROR, "depth limit exceeded");
  1377. return 0;
  1378. }
  1379. } break;
  1380. default: ASSERT(0);
  1381. }
  1382. }
  1383. return 1;
  1384. }