NCDVal.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/bsize.h>
  35. #include <misc/balloc.h>
  36. #include <misc/strdup.h>
  37. #include <misc/offset.h>
  38. #include <base/BLog.h>
  39. #include "NCDVal.h"
  40. #include <generated/blog_channel_NCDVal.h>
  41. //#define NCDVAL_TEST_EXTERNAL_STRINGS
  42. #define EXTERNAL_TYPE_MASK ((1 << 3) - 1)
  43. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  44. #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3))
  45. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  46. {
  47. ASSERT(idx >= 0)
  48. ASSERT(idx < o->used)
  49. return (o->buf ? o->buf : o->fastbuf) + idx;
  50. }
  51. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, bsize_t alloc_size, NCDVal__idx align)
  52. {
  53. if (alloc_size.is_overflow) {
  54. return -1;
  55. }
  56. NCDVal__idx mod = o->used % align;
  57. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  58. if (alloc_size.value > NCDVAL_MAXIDX - align_extra) {
  59. return -1;
  60. }
  61. NCDVal__idx aligned_alloc_size = align_extra + alloc_size.value;
  62. if (aligned_alloc_size > o->size - o->used) {
  63. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  64. while (aligned_alloc_size > newsize - o->used) {
  65. if (newsize > NCDVAL_MAXIDX / 2) {
  66. return -1;
  67. }
  68. newsize *= 2;
  69. }
  70. char *newbuf;
  71. if (!o->buf) {
  72. newbuf = malloc(newsize);
  73. if (!newbuf) {
  74. return -1;
  75. }
  76. memcpy(newbuf, o->fastbuf, o->used);
  77. } else {
  78. newbuf = realloc(o->buf, newsize);
  79. if (!newbuf) {
  80. return -1;
  81. }
  82. }
  83. o->buf = newbuf;
  84. o->size = newsize;
  85. }
  86. NCDVal__idx idx = o->used + align_extra;
  87. o->used += aligned_alloc_size;
  88. return idx;
  89. }
  90. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  91. {
  92. ASSERT(idx == -1 || mem)
  93. NCDValRef ref = {mem, idx};
  94. return ref;
  95. }
  96. static void NCDVal__AssertMem (NCDValMem *mem)
  97. {
  98. ASSERT(mem)
  99. ASSERT(mem->size >= 0)
  100. ASSERT(mem->used >= 0)
  101. ASSERT(mem->used <= mem->size)
  102. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  103. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  104. }
  105. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  106. {
  107. #ifndef NDEBUG
  108. const char *e_cbuf = e_buf;
  109. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  110. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  111. #endif
  112. }
  113. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  114. {
  115. // placeholders
  116. if (idx < -1) {
  117. return;
  118. }
  119. ASSERT(idx >= 0)
  120. ASSERT(idx + sizeof(int) <= mem->used)
  121. #ifndef NDEBUG
  122. int *type_ptr = NCDValMem__BufAt(mem, idx);
  123. switch (*type_ptr) {
  124. case NCDVAL_STRING: {
  125. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  126. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  127. ASSERT(str_e->length >= 0)
  128. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  129. } break;
  130. case NCDVAL_LIST: {
  131. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  132. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  133. ASSERT(list_e->maxcount >= 0)
  134. ASSERT(list_e->count >= 0)
  135. ASSERT(list_e->count <= list_e->maxcount)
  136. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  137. } break;
  138. case NCDVAL_MAP: {
  139. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  140. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  141. ASSERT(map_e->maxcount >= 0)
  142. ASSERT(map_e->count >= 0)
  143. ASSERT(map_e->count <= map_e->maxcount)
  144. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  145. } break;
  146. case IDSTRING_TYPE: {
  147. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  148. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  149. ASSERT(ids_e->string_id >= 0)
  150. ASSERT(ids_e->string_index)
  151. } break;
  152. case EXTERNALSTRING_TYPE: {
  153. ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used)
  154. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  155. ASSERT(exs_e->data)
  156. ASSERT(exs_e->ref.next >= -1)
  157. ASSERT(exs_e->ref.next < mem->used)
  158. ASSERT(exs_e->ref.target)
  159. } break;
  160. default: ASSERT(0);
  161. }
  162. #endif
  163. }
  164. static void NCDVal__AssertVal (NCDValRef val)
  165. {
  166. NCDVal__AssertMem(val.mem);
  167. NCDVal__AssertValOnly(val.mem, val.idx);
  168. }
  169. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  170. {
  171. ASSERT(elemidx >= 0 || elemidx == -1)
  172. NCDValMapElem me = {elemidx};
  173. return me;
  174. }
  175. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  176. {
  177. #ifndef NDEBUG
  178. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  179. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  180. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  181. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  182. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  183. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  184. #endif
  185. }
  186. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  187. {
  188. ASSERT(NCDVal_IsMap(map))
  189. NCDVal__MapAssertElemOnly(map, me.elemidx);
  190. }
  191. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  192. {
  193. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  194. }
  195. #include "NCDVal_maptree.h"
  196. #include <structure/CAvl_impl.h>
  197. void NCDValMem_Init (NCDValMem *o)
  198. {
  199. o->buf = NULL;
  200. o->size = NCDVAL_FASTBUF_SIZE;
  201. o->used = 0;
  202. o->first_ref = -1;
  203. }
  204. void NCDValMem_Free (NCDValMem *o)
  205. {
  206. NCDVal__AssertMem(o);
  207. NCDVal__idx refidx = o->first_ref;
  208. while (refidx != -1) {
  209. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  210. NCDRefTarget_Deref(ref->target);
  211. refidx = ref->next;
  212. }
  213. if (o->buf) {
  214. BFree(o->buf);
  215. }
  216. }
  217. int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other)
  218. {
  219. NCDVal__AssertMem(other);
  220. o->size = other->size;
  221. o->used = other->used;
  222. o->first_ref = other->first_ref;
  223. if (!other->buf) {
  224. o->buf = NULL;
  225. memcpy(o->fastbuf, other->fastbuf, other->used);
  226. } else {
  227. o->buf = BAlloc(other->size);
  228. if (!o->buf) {
  229. goto fail0;
  230. }
  231. memcpy(o->buf, other->buf, other->used);
  232. }
  233. NCDVal__idx refidx = o->first_ref;
  234. while (refidx != -1) {
  235. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  236. if (!NCDRefTarget_Ref(ref->target)) {
  237. goto fail1;
  238. }
  239. refidx = ref->next;
  240. }
  241. return 1;
  242. fail1:;
  243. NCDVal__idx undo_refidx = o->first_ref;
  244. while (undo_refidx != refidx) {
  245. struct NCDVal__ref *ref = NCDValMem__BufAt(o, undo_refidx);
  246. NCDRefTarget_Deref(ref->target);
  247. undo_refidx = ref->next;
  248. }
  249. if (o->buf) {
  250. BFree(o->buf);
  251. }
  252. fail0:
  253. return 0;
  254. }
  255. void NCDVal_Assert (NCDValRef val)
  256. {
  257. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  258. }
  259. int NCDVal_IsInvalid (NCDValRef val)
  260. {
  261. NCDVal_Assert(val);
  262. return (val.idx == -1);
  263. }
  264. int NCDVal_IsPlaceholder (NCDValRef val)
  265. {
  266. NCDVal_Assert(val);
  267. return (val.idx < -1);
  268. }
  269. int NCDVal_Type (NCDValRef val)
  270. {
  271. NCDVal__AssertVal(val);
  272. if (val.idx < -1) {
  273. return NCDVAL_PLACEHOLDER;
  274. }
  275. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  276. return (*type_ptr & EXTERNAL_TYPE_MASK);
  277. }
  278. NCDValRef NCDVal_NewInvalid (void)
  279. {
  280. NCDValRef ref = {NULL, -1};
  281. return ref;
  282. }
  283. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  284. {
  285. NCDVal__AssertMem(mem);
  286. ASSERT(plid >= 0)
  287. ASSERT(NCDVAL_MINIDX + plid < -1)
  288. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  289. return ref;
  290. }
  291. int NCDVal_PlaceholderId (NCDValRef val)
  292. {
  293. ASSERT(NCDVal_IsPlaceholder(val))
  294. return (val.idx - NCDVAL_MINIDX);
  295. }
  296. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  297. {
  298. NCDVal__AssertMem(mem);
  299. NCDVal__AssertVal(val);
  300. if (val.idx < -1) {
  301. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  302. }
  303. void *ptr = NCDValMem__BufAt(val.mem, val.idx);
  304. switch (*(int *)ptr) {
  305. case NCDVAL_STRING: {
  306. size_t len = NCDVal_StringLength(val);
  307. NCDValRef copy = NCDVal_NewStringUninitialized(mem, len);
  308. if (NCDVal_IsInvalid(copy)) {
  309. goto fail;
  310. }
  311. memcpy((char *)NCDVal_StringData(copy), NCDVal_StringData(val), len);
  312. return copy;
  313. } break;
  314. case NCDVAL_LIST: {
  315. size_t count = NCDVal_ListCount(val);
  316. NCDValRef copy = NCDVal_NewList(mem, count);
  317. if (NCDVal_IsInvalid(copy)) {
  318. goto fail;
  319. }
  320. for (size_t i = 0; i < count; i++) {
  321. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal_ListGet(val, i));
  322. if (NCDVal_IsInvalid(elem_copy)) {
  323. goto fail;
  324. }
  325. NCDVal_ListAppend(copy, elem_copy);
  326. }
  327. return copy;
  328. } break;
  329. case NCDVAL_MAP: {
  330. size_t count = NCDVal_MapCount(val);
  331. NCDValRef copy = NCDVal_NewMap(mem, count);
  332. if (NCDVal_IsInvalid(copy)) {
  333. goto fail;
  334. }
  335. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  336. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  337. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  338. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  339. goto fail;
  340. }
  341. int res = NCDVal_MapInsert(copy, key_copy, val_copy);
  342. ASSERT_EXECUTE(res)
  343. }
  344. return copy;
  345. } break;
  346. case IDSTRING_TYPE: {
  347. struct NCDVal__idstring *ids_e = ptr;
  348. return NCDVal_NewIdString(mem, ids_e->string_id, ids_e->string_index);
  349. } break;
  350. case EXTERNALSTRING_TYPE: {
  351. struct NCDVal__externalstring *exs_e = ptr;
  352. return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target);
  353. } break;
  354. default: ASSERT(0);
  355. }
  356. ASSERT(0);
  357. fail:
  358. return NCDVal_NewInvalid();
  359. }
  360. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  361. {
  362. NCDVal__AssertVal(val1);
  363. NCDVal__AssertVal(val2);
  364. int type1 = NCDVal_Type(val1);
  365. int type2 = NCDVal_Type(val2);
  366. if (type1 != type2) {
  367. return (type1 > type2) - (type1 < type2);
  368. }
  369. switch (type1) {
  370. case NCDVAL_STRING: {
  371. size_t len1 = NCDVal_StringLength(val1);
  372. size_t len2 = NCDVal_StringLength(val2);
  373. size_t min_len = len1 < len2 ? len1 : len2;
  374. int cmp = memcmp(NCDVal_StringData(val1), NCDVal_StringData(val2), min_len);
  375. if (cmp) {
  376. return (cmp > 0) - (cmp < 0);
  377. }
  378. return (len1 > len2) - (len1 < len2);
  379. } break;
  380. case NCDVAL_LIST: {
  381. size_t count1 = NCDVal_ListCount(val1);
  382. size_t count2 = NCDVal_ListCount(val2);
  383. size_t min_count = count1 < count2 ? count1 : count2;
  384. for (size_t i = 0; i < min_count; i++) {
  385. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  386. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  387. int cmp = NCDVal_Compare(ev1, ev2);
  388. if (cmp) {
  389. return cmp;
  390. }
  391. }
  392. return (count1 > count2) - (count1 < count2);
  393. } break;
  394. case NCDVAL_MAP: {
  395. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  396. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  397. while (1) {
  398. int inv1 = NCDVal_MapElemInvalid(e1);
  399. int inv2 = NCDVal_MapElemInvalid(e2);
  400. if (inv1 || inv2) {
  401. return inv2 - inv1;
  402. }
  403. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  404. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  405. int cmp = NCDVal_Compare(key1, key2);
  406. if (cmp) {
  407. return cmp;
  408. }
  409. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  410. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  411. cmp = NCDVal_Compare(value1, value2);
  412. if (cmp) {
  413. return cmp;
  414. }
  415. e1 = NCDVal_MapOrderedNext(val1, e1);
  416. e2 = NCDVal_MapOrderedNext(val2, e2);
  417. }
  418. } break;
  419. case NCDVAL_PLACEHOLDER: {
  420. int plid1 = NCDVal_PlaceholderId(val1);
  421. int plid2 = NCDVal_PlaceholderId(val2);
  422. return (plid1 > plid2) - (plid1 < plid2);
  423. } break;
  424. default:
  425. ASSERT(0);
  426. return 0;
  427. }
  428. }
  429. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  430. {
  431. NCDVal_Assert(val);
  432. NCDValSafeRef sval = {val.idx};
  433. return sval;
  434. }
  435. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  436. {
  437. NCDVal__AssertMem(mem);
  438. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  439. NCDValRef val = {mem, sval.idx};
  440. return val;
  441. }
  442. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  443. {
  444. NCDVal__AssertMem(mem);
  445. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  446. NCDValRef val2 = {mem, val.idx};
  447. return val2;
  448. }
  449. int NCDVal_IsString (NCDValRef val)
  450. {
  451. NCDVal__AssertVal(val);
  452. return NCDVal_Type(val) == NCDVAL_STRING;
  453. }
  454. int NCDVal_IsIdString (NCDValRef val)
  455. {
  456. NCDVal__AssertVal(val);
  457. return !(val.idx < -1) && *(int *)NCDValMem__BufAt(val.mem, val.idx) == IDSTRING_TYPE;
  458. }
  459. int NCDVal_IsExternalString (NCDValRef val)
  460. {
  461. NCDVal__AssertVal(val);
  462. return !(val.idx < -1) && *(int *)NCDValMem__BufAt(val.mem, val.idx) == EXTERNALSTRING_TYPE;
  463. }
  464. int NCDVal_IsStringNoNulls (NCDValRef val)
  465. {
  466. NCDVal__AssertVal(val);
  467. return NCDVal_Type(val) == NCDVAL_STRING && !memchr(NCDVal_StringData(val), '\0', NCDVal_StringLength(val));
  468. }
  469. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  470. {
  471. NCDVal__AssertMem(mem);
  472. ASSERT(data)
  473. NCDVal_AssertExternal(mem, data, strlen(data));
  474. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  475. }
  476. #ifdef NCDVAL_TEST_EXTERNAL_STRINGS
  477. struct test_ext_str {
  478. NCDRefTarget ref_target;
  479. char *data;
  480. };
  481. static void test_ext_str_ref_target_func_dealloc (NCDRefTarget *ref_target)
  482. {
  483. struct test_ext_str *tes = UPPER_OBJECT(ref_target, struct test_ext_str, ref_target);
  484. BFree(tes->data);
  485. BFree(tes);
  486. }
  487. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  488. {
  489. NCDVal__AssertMem(mem);
  490. ASSERT(len == 0 || data)
  491. NCDVal_AssertExternal(mem, data, len);
  492. struct test_ext_str *tes = BAlloc(sizeof(*tes));
  493. if (!tes) {
  494. goto fail0;
  495. }
  496. tes->data = BAlloc(len);
  497. if (!tes->data) {
  498. goto fail1;
  499. }
  500. if (len > 0) {
  501. memcpy(tes->data, data, len);
  502. }
  503. NCDRefTarget_Init(&tes->ref_target, test_ext_str_ref_target_func_dealloc);
  504. NCDValRef res = NCDVal_NewExternalString(mem, tes->data, len, &tes->ref_target);
  505. NCDRefTarget_Deref(&tes->ref_target);
  506. return res;
  507. fail1:
  508. BFree(tes);
  509. fail0:
  510. return NCDVal_NewInvalid();
  511. }
  512. #endif
  513. #ifndef NCDVAL_TEST_EXTERNAL_STRINGS
  514. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  515. {
  516. NCDVal__AssertMem(mem);
  517. ASSERT(len == 0 || data)
  518. NCDVal_AssertExternal(mem, data, len);
  519. if (len == SIZE_MAX) {
  520. goto fail;
  521. }
  522. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  523. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  524. if (idx < 0) {
  525. goto fail;
  526. }
  527. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  528. str_e->type = NCDVAL_STRING;
  529. str_e->length = len;
  530. if (len > 0) {
  531. memcpy(str_e->data, data, len);
  532. }
  533. str_e->data[len] = '\0';
  534. return NCDVal__Ref(mem, idx);
  535. fail:
  536. return NCDVal_NewInvalid();
  537. }
  538. #endif
  539. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  540. {
  541. NCDVal__AssertMem(mem);
  542. if (len == SIZE_MAX) {
  543. goto fail;
  544. }
  545. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  546. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  547. if (idx < 0) {
  548. goto fail;
  549. }
  550. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  551. str_e->type = NCDVAL_STRING;
  552. str_e->length = len;
  553. str_e->data[len] = '\0';
  554. return NCDVal__Ref(mem, idx);
  555. fail:
  556. return NCDVal_NewInvalid();
  557. }
  558. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index)
  559. {
  560. NCDVal__AssertMem(mem);
  561. ASSERT(string_id >= 0)
  562. ASSERT(string_index)
  563. bsize_t size = bsize_fromsize(sizeof(struct NCDVal__idstring));
  564. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  565. if (idx < 0) {
  566. goto fail;
  567. }
  568. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  569. ids_e->type = IDSTRING_TYPE;
  570. ids_e->string_id = string_id;
  571. ids_e->string_index = string_index;
  572. return NCDVal__Ref(mem, idx);
  573. fail:
  574. return NCDVal_NewInvalid();
  575. }
  576. NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len,
  577. NCDRefTarget *ref_target)
  578. {
  579. NCDVal__AssertMem(mem);
  580. ASSERT(data)
  581. NCDVal_AssertExternal(mem, data, len);
  582. ASSERT(ref_target)
  583. bsize_t size = bsize_fromsize(sizeof(struct NCDVal__externalstring));
  584. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__externalstring));
  585. if (idx < 0) {
  586. goto fail;
  587. }
  588. if (!NCDRefTarget_Ref(ref_target)) {
  589. goto fail;
  590. }
  591. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  592. exs_e->type = EXTERNALSTRING_TYPE;
  593. exs_e->data = data;
  594. exs_e->length = len;
  595. exs_e->ref.target = ref_target;
  596. exs_e->ref.next = mem->first_ref;
  597. mem->first_ref = idx + offsetof(struct NCDVal__externalstring, ref);
  598. return NCDVal__Ref(mem, idx);
  599. fail:
  600. return NCDVal_NewInvalid();
  601. }
  602. const char * NCDVal_StringData (NCDValRef string)
  603. {
  604. ASSERT(NCDVal_IsString(string))
  605. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  606. switch (*(int *)ptr) {
  607. case IDSTRING_TYPE: {
  608. struct NCDVal__idstring *ids_e = ptr;
  609. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  610. return value;
  611. } break;
  612. case EXTERNALSTRING_TYPE: {
  613. struct NCDVal__externalstring *exs_e = ptr;
  614. return exs_e->data;
  615. } break;
  616. }
  617. struct NCDVal__string *str_e = ptr;
  618. return str_e->data;
  619. }
  620. size_t NCDVal_StringLength (NCDValRef string)
  621. {
  622. ASSERT(NCDVal_IsString(string))
  623. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  624. switch (*(int *)ptr) {
  625. case IDSTRING_TYPE: {
  626. struct NCDVal__idstring *ids_e = ptr;
  627. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  628. return strlen(value);
  629. } break;
  630. case EXTERNALSTRING_TYPE: {
  631. struct NCDVal__externalstring *exs_e = ptr;
  632. return exs_e->length;
  633. } break;
  634. }
  635. struct NCDVal__string *str_e = ptr;;
  636. return str_e->length;
  637. }
  638. int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out)
  639. {
  640. ASSERT(NCDVal_IsString(string))
  641. ASSERT(out)
  642. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  643. switch (*(int *)ptr) {
  644. case IDSTRING_TYPE: {
  645. struct NCDVal__idstring *ids_e = ptr;
  646. out->data = (char *)NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  647. out->is_allocated = 0;
  648. return 1;
  649. } break;
  650. case EXTERNALSTRING_TYPE: {
  651. struct NCDVal__externalstring *exs_e = ptr;
  652. char *copy = b_strdup_bin(exs_e->data, exs_e->length);
  653. if (!copy) {
  654. return 0;
  655. }
  656. out->data = copy;
  657. out->is_allocated = 1;
  658. return 1;
  659. } break;
  660. }
  661. struct NCDVal__string *str_e = ptr;
  662. out->data = str_e->data;
  663. out->is_allocated = 0;
  664. return 1;
  665. }
  666. NCDValNullTermString NCDValNullTermString_NewDummy (void)
  667. {
  668. NCDValNullTermString nts;
  669. nts.data = NULL;
  670. nts.is_allocated = 0;
  671. return nts;
  672. }
  673. void NCDValNullTermString_Free (NCDValNullTermString *o)
  674. {
  675. if (o->is_allocated) {
  676. BFree(o->data);
  677. }
  678. }
  679. void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id,
  680. NCDStringIndex **out_string_index)
  681. {
  682. ASSERT(NCDVal_IsIdString(idstring))
  683. ASSERT(out_string_id)
  684. ASSERT(out_string_index)
  685. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  686. *out_string_id = ids_e->string_id;
  687. *out_string_index = ids_e->string_index;
  688. }
  689. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  690. {
  691. ASSERT(NCDVal_IsIdString(idstring))
  692. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  693. return ids_e->string_id;
  694. }
  695. NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring)
  696. {
  697. ASSERT(NCDVal_IsIdString(idstring))
  698. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  699. return ids_e->string_index;
  700. }
  701. NCDRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring)
  702. {
  703. ASSERT(NCDVal_IsExternalString(externalstring))
  704. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(externalstring.mem, externalstring.idx);
  705. return exs_e->ref.target;
  706. }
  707. int NCDVal_StringHasNulls (NCDValRef string)
  708. {
  709. ASSERT(NCDVal_IsString(string))
  710. const char *data = NCDVal_StringData(string);
  711. size_t length = NCDVal_StringLength(string);
  712. return !!memchr(data, '\0', length);
  713. }
  714. int NCDVal_StringEquals (NCDValRef string, const char *data)
  715. {
  716. ASSERT(NCDVal_IsString(string))
  717. ASSERT(data)
  718. size_t len = strlen(data);
  719. return NCDVal_StringLength(string) == len && !memcmp(NCDVal_StringData(string), data, len);
  720. }
  721. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id,
  722. NCDStringIndex *string_index)
  723. {
  724. ASSERT(NCDVal_IsString(string))
  725. ASSERT(string_id >= 0)
  726. ASSERT(string_index)
  727. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  728. switch (*(int *)ptr) {
  729. case IDSTRING_TYPE: {
  730. struct NCDVal__idstring *ids_e = ptr;
  731. ASSERT(ids_e->string_index == string_index)
  732. return ids_e->string_id == string_id;
  733. } break;
  734. case EXTERNALSTRING_TYPE: {
  735. struct NCDVal__externalstring *exs_e = ptr;
  736. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  737. return strlen(string_data) == exs_e->length && !memcmp(string_data, exs_e->data, exs_e->length);
  738. } break;
  739. }
  740. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  741. struct NCDVal__string *str_e = ptr;
  742. return !strcmp(str_e->data, string_data) && str_e->length == strlen(string_data);
  743. }
  744. int NCDVal_IsList (NCDValRef val)
  745. {
  746. NCDVal__AssertVal(val);
  747. return NCDVal_Type(val) == NCDVAL_LIST;
  748. }
  749. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  750. {
  751. NCDVal__AssertMem(mem);
  752. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__list)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(NCDVal__idx))));
  753. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  754. if (idx < 0) {
  755. goto fail;
  756. }
  757. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  758. list_e->type = NCDVAL_LIST;
  759. list_e->maxcount = maxcount;
  760. list_e->count = 0;
  761. return NCDVal__Ref(mem, idx);
  762. fail:
  763. return NCDVal_NewInvalid();
  764. }
  765. void NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  766. {
  767. ASSERT(NCDVal_IsList(list))
  768. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  769. ASSERT(elem.mem == list.mem)
  770. NCDVal__AssertValOnly(list.mem, elem.idx);
  771. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  772. list_e->elem_indices[list_e->count++] = elem.idx;
  773. }
  774. size_t NCDVal_ListCount (NCDValRef list)
  775. {
  776. ASSERT(NCDVal_IsList(list))
  777. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  778. return list_e->count;
  779. }
  780. size_t NCDVal_ListMaxCount (NCDValRef list)
  781. {
  782. ASSERT(NCDVal_IsList(list))
  783. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  784. return list_e->maxcount;
  785. }
  786. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  787. {
  788. ASSERT(NCDVal_IsList(list))
  789. ASSERT(pos < NCDVal_ListCount(list))
  790. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  791. ASSERT(pos < list_e->count)
  792. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  793. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  794. }
  795. int NCDVal_ListRead (NCDValRef list, int num, ...)
  796. {
  797. ASSERT(NCDVal_IsList(list))
  798. ASSERT(num >= 0)
  799. size_t count = NCDVal_ListCount(list);
  800. if (num != count) {
  801. return 0;
  802. }
  803. va_list ap;
  804. va_start(ap, num);
  805. for (int i = 0; i < num; i++) {
  806. NCDValRef *dest = va_arg(ap, NCDValRef *);
  807. *dest = NCDVal_ListGet(list, i);
  808. }
  809. va_end(ap);
  810. return 1;
  811. }
  812. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  813. {
  814. ASSERT(NCDVal_IsList(list))
  815. ASSERT(num >= 0)
  816. size_t count = NCDVal_ListCount(list);
  817. if (num > count) {
  818. return 0;
  819. }
  820. va_list ap;
  821. va_start(ap, num);
  822. for (int i = 0; i < num; i++) {
  823. NCDValRef *dest = va_arg(ap, NCDValRef *);
  824. *dest = NCDVal_ListGet(list, i);
  825. }
  826. va_end(ap);
  827. return 1;
  828. }
  829. int NCDVal_IsMap (NCDValRef val)
  830. {
  831. NCDVal__AssertVal(val);
  832. return NCDVal_Type(val) == NCDVAL_MAP;
  833. }
  834. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  835. {
  836. NCDVal__AssertMem(mem);
  837. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__map)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(struct NCDVal__mapelem))));
  838. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  839. if (idx < 0) {
  840. goto fail;
  841. }
  842. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  843. map_e->type = NCDVAL_MAP;
  844. map_e->maxcount = maxcount;
  845. map_e->count = 0;
  846. NCDVal__MapTree_Init(&map_e->tree);
  847. return NCDVal__Ref(mem, idx);
  848. fail:
  849. return NCDVal_NewInvalid();
  850. }
  851. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val)
  852. {
  853. ASSERT(NCDVal_IsMap(map))
  854. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  855. ASSERT(key.mem == map.mem)
  856. ASSERT(val.mem == map.mem)
  857. NCDVal__AssertValOnly(map.mem, key.idx);
  858. NCDVal__AssertValOnly(map.mem, val.idx);
  859. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  860. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  861. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  862. ASSERT(me_e == &map_e->elems[map_e->count])
  863. me_e->key_idx = key.idx;
  864. me_e->val_idx = val.idx;
  865. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  866. if (!res) {
  867. return 0;
  868. }
  869. map_e->count++;
  870. return 1;
  871. }
  872. size_t NCDVal_MapCount (NCDValRef map)
  873. {
  874. ASSERT(NCDVal_IsMap(map))
  875. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  876. return map_e->count;
  877. }
  878. size_t NCDVal_MapMaxCount (NCDValRef map)
  879. {
  880. ASSERT(NCDVal_IsMap(map))
  881. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  882. return map_e->maxcount;
  883. }
  884. int NCDVal_MapElemInvalid (NCDValMapElem me)
  885. {
  886. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  887. return me.elemidx < 0;
  888. }
  889. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  890. {
  891. ASSERT(NCDVal_IsMap(map))
  892. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  893. if (map_e->count == 0) {
  894. return NCDVal__MapElem(-1);
  895. }
  896. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  897. NCDVal__MapAssertElemOnly(map, elemidx);
  898. return NCDVal__MapElem(elemidx);
  899. }
  900. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  901. {
  902. NCDVal__MapAssertElem(map, me);
  903. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  904. ASSERT(map_e->count > 0)
  905. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  906. ASSERT(me.elemidx <= last_elemidx)
  907. if (me.elemidx == last_elemidx) {
  908. return NCDVal__MapElem(-1);
  909. }
  910. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  911. NCDVal__MapAssertElemOnly(map, elemidx);
  912. return NCDVal__MapElem(elemidx);
  913. }
  914. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  915. {
  916. ASSERT(NCDVal_IsMap(map))
  917. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  918. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  919. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  920. return NCDVal__MapElem(ref.link);
  921. }
  922. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  923. {
  924. NCDVal__MapAssertElem(map, me);
  925. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  926. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  927. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  928. return NCDVal__MapElem(ref.link);
  929. }
  930. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  931. {
  932. NCDVal__MapAssertElem(map, me);
  933. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  934. return NCDVal__Ref(map.mem, me_e->key_idx);
  935. }
  936. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  937. {
  938. NCDVal__MapAssertElem(map, me);
  939. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  940. return NCDVal__Ref(map.mem, me_e->val_idx);
  941. }
  942. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  943. {
  944. ASSERT(NCDVal_IsMap(map))
  945. NCDVal__AssertVal(key);
  946. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  947. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  948. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  949. return NCDVal__MapElem(ref.link);
  950. }
  951. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  952. {
  953. ASSERT(idx >= 0)
  954. NCDVal__AssertValOnly(mem, idx);
  955. ASSERT(out_num_instr)
  956. *out_num_instr = 0;
  957. void *ptr = NCDValMem__BufAt(mem, idx);
  958. struct NCDVal__instr instr;
  959. switch (*((int *)(ptr))) {
  960. case NCDVAL_STRING:
  961. case IDSTRING_TYPE:
  962. case EXTERNALSTRING_TYPE: {
  963. } break;
  964. case NCDVAL_LIST: {
  965. struct NCDVal__list *list_e = ptr;
  966. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  967. if (list_e->elem_indices[i] < -1) {
  968. if (prog) {
  969. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  970. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  971. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  972. prog->instrs[prog->num_instrs++] = instr;
  973. }
  974. (*out_num_instr)++;
  975. } else {
  976. size_t elem_num_instr;
  977. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  978. (*out_num_instr) += elem_num_instr;
  979. }
  980. }
  981. } break;
  982. case NCDVAL_MAP: {
  983. struct NCDVal__map *map_e = ptr;
  984. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  985. int need_reinsert = 0;
  986. if (map_e->elems[i].key_idx < -1) {
  987. if (prog) {
  988. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  989. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  990. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  991. prog->instrs[prog->num_instrs++] = instr;
  992. }
  993. (*out_num_instr)++;
  994. need_reinsert = 1;
  995. } else {
  996. size_t key_num_instr;
  997. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  998. (*out_num_instr) += key_num_instr;
  999. if (key_num_instr > 0) {
  1000. need_reinsert = 1;
  1001. }
  1002. }
  1003. if (map_e->elems[i].val_idx < -1) {
  1004. if (prog) {
  1005. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1006. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  1007. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1008. prog->instrs[prog->num_instrs++] = instr;
  1009. }
  1010. (*out_num_instr)++;
  1011. } else {
  1012. size_t val_num_instr;
  1013. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  1014. (*out_num_instr) += val_num_instr;
  1015. }
  1016. if (need_reinsert) {
  1017. if (prog) {
  1018. instr.type = NCDVAL_INSTR_REINSERT;
  1019. instr.reinsert.mapidx = idx;
  1020. instr.reinsert.elempos = i;
  1021. prog->instrs[prog->num_instrs++] = instr;
  1022. }
  1023. (*out_num_instr)++;
  1024. }
  1025. }
  1026. } break;
  1027. default: ASSERT(0);
  1028. }
  1029. }
  1030. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  1031. {
  1032. NCDVal__AssertVal(val);
  1033. ASSERT(!NCDVal_IsPlaceholder(val))
  1034. size_t num_instrs;
  1035. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  1036. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  1037. BLog(BLOG_ERROR, "BAllocArray failed");
  1038. return 0;
  1039. }
  1040. o->num_instrs = 0;
  1041. size_t num_instrs2;
  1042. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  1043. ASSERT(num_instrs2 == num_instrs)
  1044. ASSERT(o->num_instrs == num_instrs)
  1045. return 1;
  1046. }
  1047. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  1048. {
  1049. BFree(o->instrs);
  1050. }
  1051. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  1052. {
  1053. NCDVal__AssertMem(mem);
  1054. ASSERT(replace)
  1055. for (size_t i = 0; i < prog.num_instrs; i++) {
  1056. struct NCDVal__instr instr = prog.instrs[i];
  1057. if (instr.type == NCDVAL_INSTR_PLACEHOLDER) {
  1058. #ifndef NDEBUG
  1059. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1060. ASSERT(*check_plptr < -1)
  1061. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  1062. #endif
  1063. NCDValRef repval;
  1064. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  1065. return 0;
  1066. }
  1067. ASSERT(repval.mem == mem)
  1068. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1069. *plptr = repval.idx;
  1070. } else {
  1071. ASSERT(instr.type == NCDVAL_INSTR_REINSERT)
  1072. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  1073. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  1074. ASSERT(map_e->type == NCDVAL_MAP)
  1075. ASSERT(instr.reinsert.elempos >= 0)
  1076. ASSERT(instr.reinsert.elempos < map_e->count)
  1077. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  1078. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  1079. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  1080. BLog(BLOG_ERROR, "duplicate key in map");
  1081. return 0;
  1082. }
  1083. }
  1084. }
  1085. return 1;
  1086. }