NCDVal.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/balloc.h>
  35. #include <misc/strdup.h>
  36. #include <misc/offset.h>
  37. #include <base/BLog.h>
  38. #include "NCDVal.h"
  39. #include <generated/blog_channel_NCDVal.h>
  40. #define TYPE_MASK_EXTERNAL_TYPE ((1 << 3) - 1)
  41. #define TYPE_MASK_INTERNAL_TYPE ((1 << 5) - 1)
  42. #define TYPE_SHIFT_DEPTH 5
  43. #define STOREDSTRING_TYPE (NCDVAL_STRING | (0 << 3))
  44. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  45. #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3))
  46. #define COMPOSEDSTRING_TYPE (NCDVAL_STRING | (3 << 3))
  47. static int make_type (int internal_type, int depth)
  48. {
  49. ASSERT(internal_type == NCDVAL_LIST ||
  50. internal_type == NCDVAL_MAP ||
  51. internal_type == STOREDSTRING_TYPE ||
  52. internal_type == IDSTRING_TYPE ||
  53. internal_type == EXTERNALSTRING_TYPE ||
  54. internal_type == COMPOSEDSTRING_TYPE)
  55. ASSERT(depth >= 0)
  56. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  57. return (internal_type | (depth << TYPE_SHIFT_DEPTH));
  58. }
  59. static int get_external_type (int type)
  60. {
  61. return (type & TYPE_MASK_EXTERNAL_TYPE);
  62. }
  63. static int get_internal_type (int type)
  64. {
  65. return (type & TYPE_MASK_INTERNAL_TYPE);
  66. }
  67. static int get_depth (int type)
  68. {
  69. return (type >> TYPE_SHIFT_DEPTH);
  70. }
  71. static int bump_depth (int *type_ptr, int elem_depth)
  72. {
  73. if (get_depth(*type_ptr) < elem_depth + 1) {
  74. if (elem_depth + 1 > NCDVAL_MAX_DEPTH) {
  75. return 0;
  76. }
  77. *type_ptr = make_type(get_internal_type(*type_ptr), elem_depth + 1);
  78. }
  79. return 1;
  80. }
  81. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  82. {
  83. ASSERT(idx >= 0)
  84. ASSERT(idx < o->used)
  85. return (o->buf ? o->buf : o->fastbuf) + idx;
  86. }
  87. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, NCDVal__idx alloc_size, NCDVal__idx align)
  88. {
  89. NCDVal__idx mod = o->used % align;
  90. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  91. if (alloc_size > NCDVAL_MAXIDX - align_extra) {
  92. return -1;
  93. }
  94. NCDVal__idx aligned_alloc_size = align_extra + alloc_size;
  95. if (aligned_alloc_size > o->size - o->used) {
  96. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  97. while (aligned_alloc_size > newsize - o->used) {
  98. if (newsize > NCDVAL_MAXIDX / 2) {
  99. return -1;
  100. }
  101. newsize *= 2;
  102. }
  103. char *newbuf;
  104. if (!o->buf) {
  105. newbuf = malloc(newsize);
  106. if (!newbuf) {
  107. return -1;
  108. }
  109. memcpy(newbuf, o->fastbuf, o->used);
  110. } else {
  111. newbuf = realloc(o->buf, newsize);
  112. if (!newbuf) {
  113. return -1;
  114. }
  115. }
  116. o->buf = newbuf;
  117. o->size = newsize;
  118. }
  119. NCDVal__idx idx = o->used + align_extra;
  120. o->used += aligned_alloc_size;
  121. return idx;
  122. }
  123. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  124. {
  125. ASSERT(idx == -1 || mem)
  126. NCDValRef ref = {mem, idx};
  127. return ref;
  128. }
  129. static void NCDVal__AssertMem (NCDValMem *mem)
  130. {
  131. ASSERT(mem)
  132. ASSERT(mem->size >= 0)
  133. ASSERT(mem->used >= 0)
  134. ASSERT(mem->used <= mem->size)
  135. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  136. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  137. }
  138. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  139. {
  140. #ifndef NDEBUG
  141. const char *e_cbuf = e_buf;
  142. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  143. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  144. #endif
  145. }
  146. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  147. {
  148. // placeholders
  149. if (idx < -1) {
  150. return;
  151. }
  152. ASSERT(idx >= 0)
  153. ASSERT(idx + sizeof(int) <= mem->used)
  154. #ifndef NDEBUG
  155. int *type_ptr = NCDValMem__BufAt(mem, idx);
  156. ASSERT(get_depth(*type_ptr) >= 0)
  157. ASSERT(get_depth(*type_ptr) <= NCDVAL_MAX_DEPTH)
  158. switch (get_internal_type(*type_ptr)) {
  159. case STOREDSTRING_TYPE: {
  160. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  161. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  162. ASSERT(str_e->length >= 0)
  163. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  164. } break;
  165. case NCDVAL_LIST: {
  166. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  167. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  168. ASSERT(list_e->maxcount >= 0)
  169. ASSERT(list_e->count >= 0)
  170. ASSERT(list_e->count <= list_e->maxcount)
  171. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  172. } break;
  173. case NCDVAL_MAP: {
  174. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  175. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  176. ASSERT(map_e->maxcount >= 0)
  177. ASSERT(map_e->count >= 0)
  178. ASSERT(map_e->count <= map_e->maxcount)
  179. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  180. } break;
  181. case IDSTRING_TYPE: {
  182. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  183. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  184. ASSERT(ids_e->string_id >= 0)
  185. ASSERT(ids_e->string_index)
  186. } break;
  187. case EXTERNALSTRING_TYPE: {
  188. ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used)
  189. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  190. ASSERT(exs_e->data)
  191. ASSERT(!exs_e->ref.target || exs_e->ref.next >= -1)
  192. ASSERT(!exs_e->ref.target || exs_e->ref.next < mem->used)
  193. } break;
  194. case COMPOSEDSTRING_TYPE: {
  195. ASSERT(idx + sizeof(struct NCDVal__composedstring) <= mem->used)
  196. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx);
  197. ASSERT(cms_e->func_getptr)
  198. ASSERT(!cms_e->ref.target || cms_e->ref.next >= -1)
  199. ASSERT(!cms_e->ref.target || cms_e->ref.next < mem->used)
  200. } break;
  201. default: ASSERT(0);
  202. }
  203. #endif
  204. }
  205. static void NCDVal__AssertVal (NCDValRef val)
  206. {
  207. NCDVal__AssertMem(val.mem);
  208. NCDVal__AssertValOnly(val.mem, val.idx);
  209. }
  210. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  211. {
  212. ASSERT(elemidx >= 0 || elemidx == -1)
  213. NCDValMapElem me = {elemidx};
  214. return me;
  215. }
  216. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  217. {
  218. #ifndef NDEBUG
  219. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  220. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  221. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  222. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  223. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  224. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  225. #endif
  226. }
  227. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  228. {
  229. ASSERT(NCDVal_IsMap(map))
  230. NCDVal__MapAssertElemOnly(map, me.elemidx);
  231. }
  232. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  233. {
  234. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  235. }
  236. static int NCDVal__Depth (NCDValRef val)
  237. {
  238. ASSERT(val.idx != -1)
  239. // handle placeholders
  240. if (val.idx < 0) {
  241. return 0;
  242. }
  243. int *elem_type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  244. int depth = get_depth(*elem_type_ptr);
  245. ASSERT(depth >= 0)
  246. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  247. return depth;
  248. }
  249. static int NCDValMem__NeedRegisterLink (NCDValMem *mem, NCDVal__idx val_idx)
  250. {
  251. NCDVal__AssertValOnly(mem, val_idx);
  252. return !(val_idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(mem, val_idx)) == COMPOSEDSTRING_TYPE;
  253. }
  254. static int NCDValMem__RegisterLink (NCDValMem *mem, NCDVal__idx val_idx, NCDVal__idx link_idx)
  255. {
  256. NCDVal__AssertValOnly(mem, val_idx);
  257. ASSERT(NCDValMem__NeedRegisterLink(mem, val_idx))
  258. NCDVal__idx cms_link_idx = NCDValMem__Alloc(mem, sizeof(struct NCDVal__cms_link), __alignof(struct NCDVal__cms_link));
  259. if (cms_link_idx < 0) {
  260. return 0;
  261. }
  262. struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, cms_link_idx);
  263. cms_link->link_idx = link_idx;
  264. cms_link->next_cms_link = mem->first_cms_link;
  265. mem->first_cms_link = cms_link_idx;
  266. return 1;
  267. }
  268. static void NCDValMem__PopLastRegisteredLink (NCDValMem *mem)
  269. {
  270. ASSERT(mem->first_cms_link != -1)
  271. struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, mem->first_cms_link);
  272. mem->first_cms_link = cms_link->next_cms_link;
  273. }
  274. static NCDValRef NCDVal__CopyComposedStringToStored (NCDValRef val)
  275. {
  276. ASSERT(NCDVal_IsComposedString(val))
  277. struct NCDVal__composedstring cms_e = *(struct NCDVal__composedstring *)NCDValMem__BufAt(val.mem, val.idx);
  278. NCDValRef copy = NCDVal_NewStringUninitialized(val.mem, cms_e.length);
  279. if (NCDVal_IsInvalid(copy)) {
  280. return NCDVal_NewInvalid();
  281. }
  282. char *copy_data = (char *)NCDVal_StringData(copy);
  283. size_t pos = 0;
  284. while (pos < cms_e.length) {
  285. const char *chunk_data;
  286. size_t chunk_len;
  287. cms_e.func_getptr(cms_e.user, cms_e.offset + pos, &chunk_data, &chunk_len);
  288. ASSERT(chunk_data)
  289. ASSERT(chunk_len > 0)
  290. if (chunk_len > cms_e.length - pos) {
  291. chunk_len = cms_e.length - pos;
  292. }
  293. memcpy(copy_data + pos, chunk_data, chunk_len);
  294. pos += chunk_len;
  295. }
  296. return copy;
  297. }
  298. #include "NCDVal_maptree.h"
  299. #include <structure/CAvl_impl.h>
  300. void NCDValMem_Init (NCDValMem *o)
  301. {
  302. o->buf = NULL;
  303. o->size = NCDVAL_FASTBUF_SIZE;
  304. o->used = 0;
  305. o->first_ref = -1;
  306. o->first_cms_link = -1;
  307. }
  308. void NCDValMem_Free (NCDValMem *o)
  309. {
  310. NCDVal__AssertMem(o);
  311. NCDVal__idx refidx = o->first_ref;
  312. while (refidx != -1) {
  313. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  314. ASSERT(ref->target)
  315. NCDRefTarget_Deref(ref->target);
  316. refidx = ref->next;
  317. }
  318. if (o->buf) {
  319. BFree(o->buf);
  320. }
  321. }
  322. int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other)
  323. {
  324. NCDVal__AssertMem(other);
  325. o->size = other->size;
  326. o->used = other->used;
  327. o->first_ref = other->first_ref;
  328. o->first_cms_link = other->first_cms_link;
  329. if (!other->buf) {
  330. o->buf = NULL;
  331. memcpy(o->fastbuf, other->fastbuf, other->used);
  332. } else {
  333. o->buf = BAlloc(other->size);
  334. if (!o->buf) {
  335. goto fail0;
  336. }
  337. memcpy(o->buf, other->buf, other->used);
  338. }
  339. NCDVal__idx refidx = o->first_ref;
  340. while (refidx != -1) {
  341. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  342. ASSERT(ref->target)
  343. if (!NCDRefTarget_Ref(ref->target)) {
  344. goto fail1;
  345. }
  346. refidx = ref->next;
  347. }
  348. return 1;
  349. fail1:;
  350. NCDVal__idx undo_refidx = o->first_ref;
  351. while (undo_refidx != refidx) {
  352. struct NCDVal__ref *ref = NCDValMem__BufAt(o, undo_refidx);
  353. NCDRefTarget_Deref(ref->target);
  354. undo_refidx = ref->next;
  355. }
  356. if (o->buf) {
  357. BFree(o->buf);
  358. }
  359. fail0:
  360. return 0;
  361. }
  362. int NCDValMem_ConvertNonContinuousStrings (NCDValMem *o, NCDValRef *root_val)
  363. {
  364. NCDVal__AssertMem(o);
  365. ASSERT(root_val)
  366. ASSERT(root_val->mem == o)
  367. NCDVal__AssertValOnly(o, root_val->idx);
  368. while (o->first_cms_link != -1) {
  369. struct NCDVal__cms_link cms_link = *(struct NCDVal__cms_link *)NCDValMem__BufAt(o, o->first_cms_link);
  370. NCDVal__idx val_idx = *(NCDVal__idx *)NCDValMem__BufAt(o, cms_link.link_idx);
  371. NCDValRef val = NCDVal__Ref(o, val_idx);
  372. ASSERT(NCDVal_IsComposedString(val))
  373. NCDValRef copy = NCDVal__CopyComposedStringToStored(val);
  374. if (NCDVal_IsInvalid(copy)) {
  375. return 0;
  376. }
  377. *(int *)NCDValMem__BufAt(o, cms_link.link_idx) = copy.idx;
  378. o->first_cms_link = cms_link.next_cms_link;
  379. }
  380. if (NCDVal_IsComposedString(*root_val)) {
  381. NCDValRef copy = NCDVal__CopyComposedStringToStored(*root_val);
  382. if (NCDVal_IsInvalid(copy)) {
  383. return 0;
  384. }
  385. *root_val = copy;
  386. }
  387. return 1;
  388. }
  389. void NCDVal_Assert (NCDValRef val)
  390. {
  391. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  392. }
  393. int NCDVal_IsInvalid (NCDValRef val)
  394. {
  395. NCDVal_Assert(val);
  396. return (val.idx == -1);
  397. }
  398. int NCDVal_IsPlaceholder (NCDValRef val)
  399. {
  400. NCDVal_Assert(val);
  401. return (val.idx < -1);
  402. }
  403. int NCDVal_Type (NCDValRef val)
  404. {
  405. NCDVal__AssertVal(val);
  406. if (val.idx < -1) {
  407. return NCDVAL_PLACEHOLDER;
  408. }
  409. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  410. return get_external_type(*type_ptr);
  411. }
  412. NCDValRef NCDVal_NewInvalid (void)
  413. {
  414. NCDValRef ref = {NULL, -1};
  415. return ref;
  416. }
  417. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  418. {
  419. NCDVal__AssertMem(mem);
  420. ASSERT(plid >= 0)
  421. ASSERT(NCDVAL_MINIDX + plid < -1)
  422. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  423. return ref;
  424. }
  425. int NCDVal_PlaceholderId (NCDValRef val)
  426. {
  427. ASSERT(NCDVal_IsPlaceholder(val))
  428. return (val.idx - NCDVAL_MINIDX);
  429. }
  430. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  431. {
  432. NCDVal__AssertMem(mem);
  433. NCDVal__AssertVal(val);
  434. if (val.idx < -1) {
  435. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  436. }
  437. void *ptr = NCDValMem__BufAt(val.mem, val.idx);
  438. switch (get_internal_type(*(int *)ptr)) {
  439. case STOREDSTRING_TYPE: {
  440. struct NCDVal__string *str_e = ptr;
  441. NCDVal__idx size = sizeof(struct NCDVal__string) + str_e->length + 1;
  442. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  443. if (idx < 0) {
  444. goto fail;
  445. }
  446. str_e = NCDValMem__BufAt(val.mem, val.idx);
  447. struct NCDVal__string *new_str_e = NCDValMem__BufAt(mem, idx);
  448. memcpy(new_str_e, str_e, size);
  449. return NCDVal__Ref(mem, idx);
  450. } break;
  451. case NCDVAL_LIST: {
  452. struct NCDVal__list *list_e = ptr;
  453. NCDVal__idx size = sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx);
  454. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  455. if (idx < 0) {
  456. goto fail;
  457. }
  458. list_e = NCDValMem__BufAt(val.mem, val.idx);
  459. struct NCDVal__list *new_list_e = NCDValMem__BufAt(mem, idx);
  460. *new_list_e = *list_e;
  461. NCDVal__idx count = list_e->count;
  462. for (NCDVal__idx i = 0; i < count; i++) {
  463. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal__Ref(val.mem, list_e->elem_indices[i]));
  464. if (NCDVal_IsInvalid(elem_copy)) {
  465. goto fail;
  466. }
  467. if (NCDValMem__NeedRegisterLink(mem, elem_copy.idx)) {
  468. if (!NCDValMem__RegisterLink(mem, elem_copy.idx, idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx))) {
  469. goto fail;
  470. }
  471. }
  472. list_e = NCDValMem__BufAt(val.mem, val.idx);
  473. new_list_e = NCDValMem__BufAt(mem, idx);
  474. new_list_e->elem_indices[i] = elem_copy.idx;
  475. }
  476. return NCDVal__Ref(mem, idx);
  477. } break;
  478. case NCDVAL_MAP: {
  479. size_t count = NCDVal_MapCount(val);
  480. NCDValRef copy = NCDVal_NewMap(mem, count);
  481. if (NCDVal_IsInvalid(copy)) {
  482. goto fail;
  483. }
  484. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  485. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  486. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  487. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  488. goto fail;
  489. }
  490. int inserted;
  491. if (!NCDVal_MapInsert(copy, key_copy, val_copy, &inserted)) {
  492. goto fail;
  493. }
  494. ASSERT_EXECUTE(inserted)
  495. }
  496. return copy;
  497. } break;
  498. case IDSTRING_TYPE: {
  499. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  500. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  501. if (idx < 0) {
  502. goto fail;
  503. }
  504. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(val.mem, val.idx);
  505. struct NCDVal__idstring *new_ids_e = NCDValMem__BufAt(mem, idx);
  506. *new_ids_e = *ids_e;
  507. return NCDVal__Ref(mem, idx);
  508. } break;
  509. case EXTERNALSTRING_TYPE: {
  510. struct NCDVal__externalstring *exs_e = ptr;
  511. return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target);
  512. } break;
  513. case COMPOSEDSTRING_TYPE: {
  514. struct NCDVal__composedstring *cms_e = ptr;
  515. NCDValStringResource resource;
  516. resource.func_getptr = cms_e->func_getptr;
  517. resource.user = cms_e->user;
  518. resource.ref_target = cms_e->ref.target;
  519. return NCDVal_NewComposedString(mem, resource, cms_e->offset, cms_e->length);
  520. } break;
  521. default: ASSERT(0);
  522. }
  523. ASSERT(0);
  524. fail:
  525. return NCDVal_NewInvalid();
  526. }
  527. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  528. {
  529. NCDVal__AssertVal(val1);
  530. NCDVal__AssertVal(val2);
  531. int type1 = NCDVal_Type(val1);
  532. int type2 = NCDVal_Type(val2);
  533. if (type1 != type2) {
  534. return (type1 > type2) - (type1 < type2);
  535. }
  536. switch (type1) {
  537. case NCDVAL_STRING: {
  538. size_t len1 = NCDVal_StringLength(val1);
  539. size_t len2 = NCDVal_StringLength(val2);
  540. size_t min_len = len1 < len2 ? len1 : len2;
  541. int cmp = NCDVal_StringMemCmp(val1, val2, 0, 0, min_len);
  542. if (cmp) {
  543. return (cmp > 0) - (cmp < 0);
  544. }
  545. return (len1 > len2) - (len1 < len2);
  546. } break;
  547. case NCDVAL_LIST: {
  548. size_t count1 = NCDVal_ListCount(val1);
  549. size_t count2 = NCDVal_ListCount(val2);
  550. size_t min_count = count1 < count2 ? count1 : count2;
  551. for (size_t i = 0; i < min_count; i++) {
  552. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  553. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  554. int cmp = NCDVal_Compare(ev1, ev2);
  555. if (cmp) {
  556. return cmp;
  557. }
  558. }
  559. return (count1 > count2) - (count1 < count2);
  560. } break;
  561. case NCDVAL_MAP: {
  562. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  563. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  564. while (1) {
  565. int inv1 = NCDVal_MapElemInvalid(e1);
  566. int inv2 = NCDVal_MapElemInvalid(e2);
  567. if (inv1 || inv2) {
  568. return inv2 - inv1;
  569. }
  570. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  571. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  572. int cmp = NCDVal_Compare(key1, key2);
  573. if (cmp) {
  574. return cmp;
  575. }
  576. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  577. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  578. cmp = NCDVal_Compare(value1, value2);
  579. if (cmp) {
  580. return cmp;
  581. }
  582. e1 = NCDVal_MapOrderedNext(val1, e1);
  583. e2 = NCDVal_MapOrderedNext(val2, e2);
  584. }
  585. } break;
  586. case NCDVAL_PLACEHOLDER: {
  587. int plid1 = NCDVal_PlaceholderId(val1);
  588. int plid2 = NCDVal_PlaceholderId(val2);
  589. return (plid1 > plid2) - (plid1 < plid2);
  590. } break;
  591. default:
  592. ASSERT(0);
  593. return 0;
  594. }
  595. }
  596. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  597. {
  598. NCDVal_Assert(val);
  599. NCDValSafeRef sval = {val.idx};
  600. return sval;
  601. }
  602. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  603. {
  604. NCDVal__AssertMem(mem);
  605. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  606. NCDValRef val = {mem, sval.idx};
  607. return val;
  608. }
  609. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  610. {
  611. NCDVal__AssertMem(mem);
  612. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  613. NCDValRef val2 = {mem, val.idx};
  614. return val2;
  615. }
  616. int NCDVal_HasOnlyContinuousStrings (NCDValRef val)
  617. {
  618. NCDVal__AssertVal(val);
  619. switch (NCDVal_Type(val)) {
  620. case NCDVAL_STRING: {
  621. if (!NCDVal_IsContinuousString(val)) {
  622. return 0;
  623. }
  624. } break;
  625. case NCDVAL_LIST: {
  626. size_t count = NCDVal_ListCount(val);
  627. for (size_t i = 0; i < count; i++) {
  628. NCDValRef elem = NCDVal_ListGet(val, i);
  629. if (!NCDVal_HasOnlyContinuousStrings(elem)) {
  630. return 0;
  631. }
  632. }
  633. } break;
  634. case NCDVAL_MAP: {
  635. for (NCDValMapElem me = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(me); me = NCDVal_MapNext(val, me)) {
  636. NCDValRef e_key = NCDVal_MapElemKey(val, me);
  637. NCDValRef e_val = NCDVal_MapElemVal(val, me);
  638. if (!NCDVal_HasOnlyContinuousStrings(e_key) || !NCDVal_HasOnlyContinuousStrings(e_val)) {
  639. return 0;
  640. }
  641. }
  642. } break;
  643. case NCDVAL_PLACEHOLDER: {
  644. } break;
  645. default:
  646. ASSERT(0);
  647. }
  648. return 1;
  649. }
  650. int NCDVal_IsString (NCDValRef val)
  651. {
  652. NCDVal__AssertVal(val);
  653. return NCDVal_Type(val) == NCDVAL_STRING;
  654. }
  655. int NCDVal_IsContinuousString (NCDValRef val)
  656. {
  657. NCDVal__AssertVal(val);
  658. if (val.idx < -1) {
  659. return 0;
  660. }
  661. switch (get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx))) {
  662. case STOREDSTRING_TYPE:
  663. case IDSTRING_TYPE:
  664. case EXTERNALSTRING_TYPE:
  665. return 1;
  666. default:
  667. return 0;
  668. }
  669. }
  670. int NCDVal_IsStoredString (NCDValRef val)
  671. {
  672. NCDVal__AssertVal(val);
  673. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == STOREDSTRING_TYPE;
  674. }
  675. int NCDVal_IsIdString (NCDValRef val)
  676. {
  677. NCDVal__AssertVal(val);
  678. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == IDSTRING_TYPE;
  679. }
  680. int NCDVal_IsExternalString (NCDValRef val)
  681. {
  682. NCDVal__AssertVal(val);
  683. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == EXTERNALSTRING_TYPE;
  684. }
  685. int NCDVal_IsComposedString (NCDValRef val)
  686. {
  687. NCDVal__AssertVal(val);
  688. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == COMPOSEDSTRING_TYPE;
  689. }
  690. int NCDVal_IsStringNoNulls (NCDValRef val)
  691. {
  692. NCDVal__AssertVal(val);
  693. return NCDVal_Type(val) == NCDVAL_STRING && !NCDVal_StringHasNulls(val);
  694. }
  695. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  696. {
  697. NCDVal__AssertMem(mem);
  698. ASSERT(data)
  699. NCDVal_AssertExternal(mem, data, strlen(data));
  700. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  701. }
  702. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  703. {
  704. NCDVal__AssertMem(mem);
  705. ASSERT(len == 0 || data)
  706. NCDVal_AssertExternal(mem, data, len);
  707. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  708. goto fail;
  709. }
  710. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  711. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  712. if (idx < 0) {
  713. goto fail;
  714. }
  715. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  716. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  717. str_e->length = len;
  718. if (len > 0) {
  719. memcpy(str_e->data, data, len);
  720. }
  721. str_e->data[len] = '\0';
  722. return NCDVal__Ref(mem, idx);
  723. fail:
  724. return NCDVal_NewInvalid();
  725. }
  726. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  727. {
  728. NCDVal__AssertMem(mem);
  729. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  730. goto fail;
  731. }
  732. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  733. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  734. if (idx < 0) {
  735. goto fail;
  736. }
  737. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  738. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  739. str_e->length = len;
  740. str_e->data[len] = '\0';
  741. return NCDVal__Ref(mem, idx);
  742. fail:
  743. return NCDVal_NewInvalid();
  744. }
  745. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index)
  746. {
  747. NCDVal__AssertMem(mem);
  748. ASSERT(string_id >= 0)
  749. ASSERT(string_index)
  750. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  751. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  752. if (idx < 0) {
  753. goto fail;
  754. }
  755. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  756. ids_e->type = make_type(IDSTRING_TYPE, 0);
  757. ids_e->string_id = string_id;
  758. ids_e->string_index = string_index;
  759. return NCDVal__Ref(mem, idx);
  760. fail:
  761. return NCDVal_NewInvalid();
  762. }
  763. NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len,
  764. NCDRefTarget *ref_target)
  765. {
  766. NCDVal__AssertMem(mem);
  767. ASSERT(data)
  768. NCDVal_AssertExternal(mem, data, len);
  769. NCDVal__idx size = sizeof(struct NCDVal__externalstring);
  770. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__externalstring));
  771. if (idx < 0) {
  772. goto fail;
  773. }
  774. if (ref_target) {
  775. if (!NCDRefTarget_Ref(ref_target)) {
  776. goto fail;
  777. }
  778. }
  779. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  780. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  781. exs_e->data = data;
  782. exs_e->length = len;
  783. exs_e->ref.target = ref_target;
  784. if (ref_target) {
  785. exs_e->ref.next = mem->first_ref;
  786. mem->first_ref = idx + offsetof(struct NCDVal__externalstring, ref);
  787. }
  788. return NCDVal__Ref(mem, idx);
  789. fail:
  790. return NCDVal_NewInvalid();
  791. }
  792. NCDValRef NCDVal_NewComposedString (NCDValMem *mem, NCDValStringResource resource, size_t offset, size_t length)
  793. {
  794. NCDVal__AssertMem(mem);
  795. ASSERT(resource.func_getptr)
  796. NCDVal__idx size = sizeof(struct NCDVal__composedstring);
  797. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__composedstring));
  798. if (idx < 0) {
  799. goto fail;
  800. }
  801. if (resource.ref_target) {
  802. if (!NCDRefTarget_Ref(resource.ref_target)) {
  803. goto fail;
  804. }
  805. }
  806. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx);
  807. cms_e->type = make_type(COMPOSEDSTRING_TYPE, 0);
  808. cms_e->offset = offset;
  809. cms_e->length = length;
  810. cms_e->func_getptr = resource.func_getptr;
  811. cms_e->user = resource.user;
  812. cms_e->ref.target = resource.ref_target;
  813. if (resource.ref_target) {
  814. cms_e->ref.next = mem->first_ref;
  815. mem->first_ref = idx + offsetof(struct NCDVal__composedstring, ref);
  816. }
  817. return NCDVal__Ref(mem, idx);
  818. fail:
  819. return NCDVal_NewInvalid();
  820. }
  821. const char * NCDVal_StringData (NCDValRef contstring)
  822. {
  823. ASSERT(NCDVal_IsContinuousString(contstring))
  824. void *ptr = NCDValMem__BufAt(contstring.mem, contstring.idx);
  825. switch (get_internal_type(*(int *)ptr)) {
  826. case STOREDSTRING_TYPE: {
  827. struct NCDVal__string *str_e = ptr;
  828. return str_e->data;
  829. } break;
  830. case IDSTRING_TYPE: {
  831. struct NCDVal__idstring *ids_e = ptr;
  832. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  833. return value;
  834. } break;
  835. case EXTERNALSTRING_TYPE: {
  836. struct NCDVal__externalstring *exs_e = ptr;
  837. return exs_e->data;
  838. } break;
  839. default:
  840. ASSERT(0);
  841. return NULL;
  842. }
  843. }
  844. size_t NCDVal_StringLength (NCDValRef string)
  845. {
  846. ASSERT(NCDVal_IsString(string))
  847. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  848. switch (get_internal_type(*(int *)ptr)) {
  849. case STOREDSTRING_TYPE: {
  850. struct NCDVal__string *str_e = ptr;
  851. return str_e->length;
  852. } break;
  853. case IDSTRING_TYPE: {
  854. struct NCDVal__idstring *ids_e = ptr;
  855. return NCDStringIndex_Length(ids_e->string_index, ids_e->string_id);
  856. } break;
  857. case EXTERNALSTRING_TYPE: {
  858. struct NCDVal__externalstring *exs_e = ptr;
  859. return exs_e->length;
  860. } break;
  861. case COMPOSEDSTRING_TYPE: {
  862. struct NCDVal__composedstring *cms_e = ptr;
  863. return cms_e->length;
  864. } break;
  865. default:
  866. ASSERT(0);
  867. return 0;
  868. }
  869. }
  870. void NCDValStringResource_GetPtr (NCDValStringResource resource, size_t offset, size_t max_length, const char **out_data, size_t *out_length)
  871. {
  872. ASSERT(max_length > 0)
  873. ASSERT(out_data)
  874. ASSERT(out_length)
  875. resource.func_getptr(resource.user, offset, out_data, out_length);
  876. if (*out_length > max_length) {
  877. *out_length = max_length;
  878. }
  879. }
  880. void NCDVal_StringGetPtr (NCDValRef string, size_t offset, size_t max_length, const char **out_data, size_t *out_length)
  881. {
  882. ASSERT(NCDVal_IsString(string))
  883. ASSERT(offset < NCDVal_StringLength(string))
  884. ASSERT(max_length > 0)
  885. ASSERT(out_data)
  886. ASSERT(out_length)
  887. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  888. switch (get_internal_type(*(int *)ptr)) {
  889. case STOREDSTRING_TYPE: {
  890. struct NCDVal__string *str_e = ptr;
  891. *out_data = str_e->data + offset;
  892. *out_length = str_e->length - offset;
  893. } break;
  894. case IDSTRING_TYPE: {
  895. struct NCDVal__idstring *ids_e = ptr;
  896. *out_data = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id) + offset;
  897. *out_length = NCDStringIndex_Length(ids_e->string_index, ids_e->string_id) - offset;
  898. } break;
  899. case EXTERNALSTRING_TYPE: {
  900. struct NCDVal__externalstring *exs_e = ptr;
  901. *out_data = exs_e->data + offset;
  902. *out_length = exs_e->length - offset;
  903. } break;
  904. case COMPOSEDSTRING_TYPE: {
  905. struct NCDVal__composedstring *cms_e = ptr;
  906. cms_e->func_getptr(cms_e->user, cms_e->offset + offset, out_data, out_length);
  907. ASSERT(*out_data)
  908. ASSERT(*out_length > 0)
  909. } break;
  910. default:
  911. ASSERT(0);
  912. *out_data = NULL;
  913. *out_length = 0;
  914. }
  915. if (*out_length > max_length) {
  916. *out_length = max_length;
  917. }
  918. }
  919. int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out)
  920. {
  921. ASSERT(NCDVal_IsString(string))
  922. ASSERT(out)
  923. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  924. switch (get_internal_type(*(int *)ptr)) {
  925. case STOREDSTRING_TYPE: {
  926. struct NCDVal__string *str_e = ptr;
  927. out->data = str_e->data;
  928. out->is_allocated = 0;
  929. return 1;
  930. } break;
  931. case IDSTRING_TYPE: {
  932. struct NCDVal__idstring *ids_e = ptr;
  933. out->data = (char *)NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  934. out->is_allocated = 0;
  935. return 1;
  936. } break;
  937. case EXTERNALSTRING_TYPE: {
  938. struct NCDVal__externalstring *exs_e = ptr;
  939. char *copy = b_strdup_bin(exs_e->data, exs_e->length);
  940. if (!copy) {
  941. return 0;
  942. }
  943. out->data = copy;
  944. out->is_allocated = 1;
  945. return 1;
  946. } break;
  947. case COMPOSEDSTRING_TYPE: {
  948. struct NCDVal__composedstring *cms_e = ptr;
  949. size_t length = cms_e->length;
  950. if (length == SIZE_MAX) {
  951. return 0;
  952. }
  953. char *copy = BAlloc(length + 1);
  954. if (!copy) {
  955. return 0;
  956. }
  957. NCDVal_StringCopyOut(string, 0, length, copy);
  958. copy[length] = '\0';
  959. out->data = copy;
  960. out->is_allocated = 1;
  961. return 1;
  962. } break;
  963. default:
  964. ASSERT(0);
  965. return 0;
  966. }
  967. }
  968. NCDValNullTermString NCDValNullTermString_NewDummy (void)
  969. {
  970. NCDValNullTermString nts;
  971. nts.data = NULL;
  972. nts.is_allocated = 0;
  973. return nts;
  974. }
  975. void NCDValNullTermString_Free (NCDValNullTermString *o)
  976. {
  977. if (o->is_allocated) {
  978. BFree(o->data);
  979. }
  980. }
  981. int NCDVal_StringContinuize (NCDValRef string, NCDValContString *out)
  982. {
  983. ASSERT(NCDVal_IsString(string))
  984. ASSERT(out)
  985. if (NCDVal_IsContinuousString(string)) {
  986. out->data = NCDVal_StringData(string);
  987. out->is_allocated = 0;
  988. return 1;
  989. }
  990. size_t length = NCDVal_StringLength(string);
  991. char *data = BAlloc(length);
  992. if (!data) {
  993. return 0;
  994. }
  995. NCDVal_StringCopyOut(string, 0, length, data);
  996. out->data = data;
  997. out->is_allocated = 1;
  998. return 1;
  999. }
  1000. NCDValContString NCDValContString_NewDummy (void)
  1001. {
  1002. NCDValContString cts;
  1003. cts.data = NULL;
  1004. cts.is_allocated = 0;
  1005. return cts;
  1006. }
  1007. void NCDValContString_Free (NCDValContString *o)
  1008. {
  1009. if (o->is_allocated) {
  1010. BFree(o->data);
  1011. }
  1012. }
  1013. void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id,
  1014. NCDStringIndex **out_string_index)
  1015. {
  1016. ASSERT(NCDVal_IsIdString(idstring))
  1017. ASSERT(out_string_id)
  1018. ASSERT(out_string_index)
  1019. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  1020. *out_string_id = ids_e->string_id;
  1021. *out_string_index = ids_e->string_index;
  1022. }
  1023. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  1024. {
  1025. ASSERT(NCDVal_IsIdString(idstring))
  1026. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  1027. return ids_e->string_id;
  1028. }
  1029. NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring)
  1030. {
  1031. ASSERT(NCDVal_IsIdString(idstring))
  1032. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  1033. return ids_e->string_index;
  1034. }
  1035. NCDRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring)
  1036. {
  1037. ASSERT(NCDVal_IsExternalString(externalstring))
  1038. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(externalstring.mem, externalstring.idx);
  1039. return exs_e->ref.target;
  1040. }
  1041. NCDValStringResource NCDVal_ComposedStringResource (NCDValRef composedstring)
  1042. {
  1043. ASSERT(NCDVal_IsComposedString(composedstring))
  1044. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx);
  1045. NCDValStringResource res;
  1046. res.func_getptr = cms_e->func_getptr;
  1047. res.user = cms_e->user;
  1048. res.ref_target = cms_e->ref.target;
  1049. return res;
  1050. }
  1051. size_t NCDVal_ComposedStringOffset (NCDValRef composedstring)
  1052. {
  1053. ASSERT(NCDVal_IsComposedString(composedstring))
  1054. struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx);
  1055. return cms_e->offset;
  1056. }
  1057. int NCDVal_StringHasNulls (NCDValRef string)
  1058. {
  1059. ASSERT(NCDVal_IsString(string))
  1060. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  1061. switch (get_internal_type(*(int *)ptr)) {
  1062. case IDSTRING_TYPE: {
  1063. struct NCDVal__idstring *ids_e = ptr;
  1064. return NCDStringIndex_HasNulls(ids_e->string_index, ids_e->string_id);
  1065. } break;
  1066. case STOREDSTRING_TYPE:
  1067. case EXTERNALSTRING_TYPE: {
  1068. const char *data = NCDVal_StringData(string);
  1069. size_t length = NCDVal_StringLength(string);
  1070. return !!memchr(data, '\0', length);
  1071. } break;
  1072. case COMPOSEDSTRING_TYPE: {
  1073. size_t pos = 0;
  1074. size_t length = NCDVal_StringLength(string);
  1075. while (pos < length) {
  1076. const char *chunk_data;
  1077. size_t chunk_len;
  1078. NCDVal_StringGetPtr(string, pos, length - pos, &chunk_data, &chunk_len);
  1079. if (memchr(chunk_data, '\0', chunk_len)) {
  1080. return 1;
  1081. }
  1082. pos += chunk_len;
  1083. }
  1084. return 0;
  1085. } break;
  1086. default:
  1087. ASSERT(0);
  1088. return 0;
  1089. }
  1090. }
  1091. int NCDVal_StringEquals (NCDValRef string, const char *data)
  1092. {
  1093. ASSERT(NCDVal_IsString(string))
  1094. ASSERT(data)
  1095. size_t data_len = strlen(data);
  1096. return NCDVal_StringLength(string) == data_len && NCDVal_StringRegionEquals(string, 0, data_len, data);
  1097. }
  1098. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id,
  1099. NCDStringIndex *string_index)
  1100. {
  1101. ASSERT(NCDVal_IsString(string))
  1102. ASSERT(string_id >= 0)
  1103. ASSERT(string_index)
  1104. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  1105. switch (get_internal_type(*(int *)ptr)) {
  1106. case STOREDSTRING_TYPE: {
  1107. struct NCDVal__string *str_e = ptr;
  1108. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1109. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1110. return (string_length == str_e->length) && !memcmp(string_data, str_e->data, string_length);
  1111. } break;
  1112. case IDSTRING_TYPE: {
  1113. struct NCDVal__idstring *ids_e = ptr;
  1114. ASSERT(ids_e->string_index == string_index)
  1115. return ids_e->string_id == string_id;
  1116. } break;
  1117. case EXTERNALSTRING_TYPE: {
  1118. struct NCDVal__externalstring *exs_e = ptr;
  1119. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1120. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1121. return (string_length == exs_e->length) && !memcmp(string_data, exs_e->data, string_length);
  1122. } break;
  1123. case COMPOSEDSTRING_TYPE: {
  1124. struct NCDVal__composedstring *cms_e = ptr;
  1125. const char *string_data = NCDStringIndex_Value(string_index, string_id);
  1126. size_t string_length = NCDStringIndex_Length(string_index, string_id);
  1127. return (string_length == cms_e->length) && NCDVal_StringRegionEquals(string, 0, string_length, string_data);
  1128. } break;
  1129. default:
  1130. ASSERT(0);
  1131. return 0;
  1132. }
  1133. }
  1134. int NCDVal_StringMemCmp (NCDValRef string1, NCDValRef string2, size_t start1, size_t start2, size_t length)
  1135. {
  1136. ASSERT(NCDVal_IsString(string1))
  1137. ASSERT(NCDVal_IsString(string2))
  1138. ASSERT(start1 <= NCDVal_StringLength(string1))
  1139. ASSERT(start2 <= NCDVal_StringLength(string2))
  1140. ASSERT(length <= NCDVal_StringLength(string1) - start1)
  1141. ASSERT(length <= NCDVal_StringLength(string2) - start2)
  1142. if (NCDVal_IsContinuousString(string1) && NCDVal_IsContinuousString(string2)) {
  1143. return memcmp(NCDVal_StringData(string1) + start1, NCDVal_StringData(string2) + start2, length);
  1144. }
  1145. size_t pos1 = 0;
  1146. while (pos1 < length) {
  1147. const char *chunk_data1;
  1148. size_t chunk_len1;
  1149. NCDVal_StringGetPtr(string1, start1 + pos1, length - pos1, &chunk_data1, &chunk_len1);
  1150. size_t pos2 = 0;
  1151. while (pos2 < chunk_len1) {
  1152. const char *chunk_data2;
  1153. size_t chunk_len2;
  1154. NCDVal_StringGetPtr(string2, start2 + pos1 + pos2, chunk_len1 - pos2, &chunk_data2, &chunk_len2);
  1155. int cmp = memcmp(chunk_data1 + pos2, chunk_data2, chunk_len2);
  1156. if (cmp) {
  1157. return cmp;
  1158. }
  1159. pos2 += chunk_len2;
  1160. }
  1161. pos1 += chunk_len1;
  1162. }
  1163. return 0;
  1164. }
  1165. void NCDVal_StringCopyOut (NCDValRef string, size_t start, size_t length, char *dst)
  1166. {
  1167. ASSERT(NCDVal_IsString(string))
  1168. ASSERT(start <= NCDVal_StringLength(string))
  1169. ASSERT(length <= NCDVal_StringLength(string) - start)
  1170. if (NCDVal_IsContinuousString(string)) {
  1171. memcpy(dst, NCDVal_StringData(string) + start, length);
  1172. return;
  1173. }
  1174. size_t pos = 0;
  1175. while (pos < length) {
  1176. const char *chunk_data;
  1177. size_t chunk_len;
  1178. NCDVal_StringGetPtr(string, start + pos, length - pos, &chunk_data, &chunk_len);
  1179. memcpy(dst + pos, chunk_data, chunk_len);
  1180. pos += chunk_len;
  1181. }
  1182. }
  1183. int NCDVal_StringRegionEquals (NCDValRef string, size_t start, size_t length, const char *data)
  1184. {
  1185. ASSERT(NCDVal_IsString(string))
  1186. ASSERT(start <= NCDVal_StringLength(string))
  1187. ASSERT(length <= NCDVal_StringLength(string) - start)
  1188. if (NCDVal_IsContinuousString(string)) {
  1189. return !memcmp(NCDVal_StringData(string) + start, data, length);
  1190. }
  1191. size_t pos = 0;
  1192. while (pos < length) {
  1193. const char *chunk_data;
  1194. size_t chunk_len;
  1195. NCDVal_StringGetPtr(string, start + pos, length - pos, &chunk_data, &chunk_len);
  1196. if (memcmp(chunk_data, data + pos, chunk_len)) {
  1197. return 0;
  1198. }
  1199. pos += chunk_len;
  1200. }
  1201. return 1;
  1202. }
  1203. int NCDVal_IsList (NCDValRef val)
  1204. {
  1205. NCDVal__AssertVal(val);
  1206. return NCDVal_Type(val) == NCDVAL_LIST;
  1207. }
  1208. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  1209. {
  1210. NCDVal__AssertMem(mem);
  1211. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__list)) / sizeof(NCDVal__idx)) {
  1212. goto fail;
  1213. }
  1214. NCDVal__idx size = sizeof(struct NCDVal__list) + maxcount * sizeof(NCDVal__idx);
  1215. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  1216. if (idx < 0) {
  1217. goto fail;
  1218. }
  1219. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  1220. list_e->type = make_type(NCDVAL_LIST, 0);
  1221. list_e->maxcount = maxcount;
  1222. list_e->count = 0;
  1223. return NCDVal__Ref(mem, idx);
  1224. fail:
  1225. return NCDVal_NewInvalid();
  1226. }
  1227. int NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  1228. {
  1229. ASSERT(NCDVal_IsList(list))
  1230. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  1231. ASSERT(elem.mem == list.mem)
  1232. NCDVal__AssertValOnly(list.mem, elem.idx);
  1233. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1234. int new_type = list_e->type;
  1235. if (!bump_depth(&new_type, NCDVal__Depth(elem))) {
  1236. return 0;
  1237. }
  1238. if (NCDValMem__NeedRegisterLink(list.mem, elem.idx)) {
  1239. if (!NCDValMem__RegisterLink(list.mem, elem.idx, list.idx + offsetof(struct NCDVal__list, elem_indices) + list_e->count * sizeof(NCDVal__idx))) {
  1240. return 0;
  1241. }
  1242. list_e = NCDValMem__BufAt(list.mem, list.idx);
  1243. }
  1244. list_e->type = new_type;
  1245. list_e->elem_indices[list_e->count++] = elem.idx;
  1246. return 1;
  1247. }
  1248. size_t NCDVal_ListCount (NCDValRef list)
  1249. {
  1250. ASSERT(NCDVal_IsList(list))
  1251. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1252. return list_e->count;
  1253. }
  1254. size_t NCDVal_ListMaxCount (NCDValRef list)
  1255. {
  1256. ASSERT(NCDVal_IsList(list))
  1257. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1258. return list_e->maxcount;
  1259. }
  1260. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  1261. {
  1262. ASSERT(NCDVal_IsList(list))
  1263. ASSERT(pos < NCDVal_ListCount(list))
  1264. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1265. ASSERT(pos < list_e->count)
  1266. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  1267. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  1268. }
  1269. int NCDVal_ListRead (NCDValRef list, int num, ...)
  1270. {
  1271. ASSERT(NCDVal_IsList(list))
  1272. ASSERT(num >= 0)
  1273. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1274. if (num != list_e->count) {
  1275. return 0;
  1276. }
  1277. va_list ap;
  1278. va_start(ap, num);
  1279. for (int i = 0; i < num; i++) {
  1280. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1281. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1282. }
  1283. va_end(ap);
  1284. return 1;
  1285. }
  1286. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  1287. {
  1288. ASSERT(NCDVal_IsList(list))
  1289. ASSERT(num >= 0)
  1290. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1291. if (num > list_e->count) {
  1292. return 0;
  1293. }
  1294. va_list ap;
  1295. va_start(ap, num);
  1296. for (int i = 0; i < num; i++) {
  1297. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1298. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1299. }
  1300. va_end(ap);
  1301. return 1;
  1302. }
  1303. int NCDVal_IsMap (NCDValRef val)
  1304. {
  1305. NCDVal__AssertVal(val);
  1306. return NCDVal_Type(val) == NCDVAL_MAP;
  1307. }
  1308. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  1309. {
  1310. NCDVal__AssertMem(mem);
  1311. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__map)) / sizeof(struct NCDVal__mapelem)) {
  1312. goto fail;
  1313. }
  1314. NCDVal__idx size = sizeof(struct NCDVal__map) + maxcount * sizeof(struct NCDVal__mapelem);
  1315. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  1316. if (idx < 0) {
  1317. goto fail;
  1318. }
  1319. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  1320. map_e->type = make_type(NCDVAL_MAP, 0);
  1321. map_e->maxcount = maxcount;
  1322. map_e->count = 0;
  1323. NCDVal__MapTree_Init(&map_e->tree);
  1324. return NCDVal__Ref(mem, idx);
  1325. fail:
  1326. return NCDVal_NewInvalid();
  1327. }
  1328. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val, int *out_inserted)
  1329. {
  1330. ASSERT(NCDVal_IsMap(map))
  1331. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  1332. ASSERT(key.mem == map.mem)
  1333. ASSERT(val.mem == map.mem)
  1334. NCDVal__AssertValOnly(map.mem, key.idx);
  1335. NCDVal__AssertValOnly(map.mem, val.idx);
  1336. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1337. int new_type = map_e->type;
  1338. if (!bump_depth(&new_type, NCDVal__Depth(key)) || !bump_depth(&new_type, NCDVal__Depth(val))) {
  1339. goto fail0;
  1340. }
  1341. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  1342. if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) {
  1343. if (!NCDValMem__RegisterLink(map.mem, key.idx, elemidx + offsetof(struct NCDVal__mapelem, key_idx))) {
  1344. goto fail0;
  1345. }
  1346. map_e = NCDValMem__BufAt(map.mem, map.idx);
  1347. }
  1348. if (NCDValMem__NeedRegisterLink(map.mem, val.idx)) {
  1349. if (!NCDValMem__RegisterLink(map.mem, val.idx, elemidx + offsetof(struct NCDVal__mapelem, val_idx))) {
  1350. goto fail1;
  1351. }
  1352. map_e = NCDValMem__BufAt(map.mem, map.idx);
  1353. }
  1354. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  1355. ASSERT(me_e == &map_e->elems[map_e->count])
  1356. me_e->key_idx = key.idx;
  1357. me_e->val_idx = val.idx;
  1358. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  1359. if (!res) {
  1360. if (out_inserted) {
  1361. *out_inserted = 0;
  1362. }
  1363. return 1;
  1364. }
  1365. map_e->type = new_type;
  1366. map_e->count++;
  1367. if (out_inserted) {
  1368. *out_inserted = 1;
  1369. }
  1370. return 1;
  1371. fail1:
  1372. if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) {
  1373. NCDValMem__PopLastRegisteredLink(map.mem);
  1374. }
  1375. fail0:
  1376. return 0;
  1377. }
  1378. size_t NCDVal_MapCount (NCDValRef map)
  1379. {
  1380. ASSERT(NCDVal_IsMap(map))
  1381. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1382. return map_e->count;
  1383. }
  1384. size_t NCDVal_MapMaxCount (NCDValRef map)
  1385. {
  1386. ASSERT(NCDVal_IsMap(map))
  1387. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1388. return map_e->maxcount;
  1389. }
  1390. int NCDVal_MapElemInvalid (NCDValMapElem me)
  1391. {
  1392. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  1393. return me.elemidx < 0;
  1394. }
  1395. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  1396. {
  1397. ASSERT(NCDVal_IsMap(map))
  1398. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1399. if (map_e->count == 0) {
  1400. return NCDVal__MapElem(-1);
  1401. }
  1402. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  1403. NCDVal__MapAssertElemOnly(map, elemidx);
  1404. return NCDVal__MapElem(elemidx);
  1405. }
  1406. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  1407. {
  1408. NCDVal__MapAssertElem(map, me);
  1409. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1410. ASSERT(map_e->count > 0)
  1411. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  1412. ASSERT(me.elemidx <= last_elemidx)
  1413. if (me.elemidx == last_elemidx) {
  1414. return NCDVal__MapElem(-1);
  1415. }
  1416. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  1417. NCDVal__MapAssertElemOnly(map, elemidx);
  1418. return NCDVal__MapElem(elemidx);
  1419. }
  1420. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  1421. {
  1422. ASSERT(NCDVal_IsMap(map))
  1423. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1424. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  1425. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1426. return NCDVal__MapElem(ref.link);
  1427. }
  1428. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  1429. {
  1430. NCDVal__MapAssertElem(map, me);
  1431. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1432. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  1433. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1434. return NCDVal__MapElem(ref.link);
  1435. }
  1436. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  1437. {
  1438. NCDVal__MapAssertElem(map, me);
  1439. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1440. return NCDVal__Ref(map.mem, me_e->key_idx);
  1441. }
  1442. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  1443. {
  1444. NCDVal__MapAssertElem(map, me);
  1445. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1446. return NCDVal__Ref(map.mem, me_e->val_idx);
  1447. }
  1448. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  1449. {
  1450. ASSERT(NCDVal_IsMap(map))
  1451. NCDVal__AssertVal(key);
  1452. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1453. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  1454. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1455. return NCDVal__MapElem(ref.link);
  1456. }
  1457. NCDValRef NCDVal_MapGetValue (NCDValRef map, const char *key_str)
  1458. {
  1459. ASSERT(NCDVal_IsMap(map))
  1460. ASSERT(key_str)
  1461. NCDValMem mem;
  1462. mem.buf = NULL;
  1463. mem.size = NCDVAL_FASTBUF_SIZE;
  1464. mem.used = sizeof(struct NCDVal__externalstring);
  1465. mem.first_ref = -1;
  1466. struct NCDVal__externalstring *exs_e = (void *)mem.fastbuf;
  1467. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  1468. exs_e->data = key_str;
  1469. exs_e->length = strlen(key_str);
  1470. exs_e->ref.target = NULL;
  1471. NCDValRef key = NCDVal__Ref(&mem, 0);
  1472. NCDValMapElem elem = NCDVal_MapFindKey(map, key);
  1473. if (NCDVal_MapElemInvalid(elem)) {
  1474. return NCDVal_NewInvalid();
  1475. }
  1476. return NCDVal_MapElemVal(map, elem);
  1477. }
  1478. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  1479. {
  1480. ASSERT(idx >= 0)
  1481. NCDVal__AssertValOnly(mem, idx);
  1482. ASSERT(out_num_instr)
  1483. *out_num_instr = 0;
  1484. void *ptr = NCDValMem__BufAt(mem, idx);
  1485. struct NCDVal__instr instr;
  1486. switch (get_internal_type(*((int *)(ptr)))) {
  1487. case STOREDSTRING_TYPE:
  1488. case IDSTRING_TYPE:
  1489. case EXTERNALSTRING_TYPE:
  1490. case COMPOSEDSTRING_TYPE: {
  1491. } break;
  1492. case NCDVAL_LIST: {
  1493. struct NCDVal__list *list_e = ptr;
  1494. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  1495. int elem_changed = 0;
  1496. if (list_e->elem_indices[i] < -1) {
  1497. if (prog) {
  1498. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1499. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  1500. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1501. prog->instrs[prog->num_instrs++] = instr;
  1502. }
  1503. (*out_num_instr)++;
  1504. elem_changed = 1;
  1505. } else {
  1506. size_t elem_num_instr;
  1507. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  1508. (*out_num_instr) += elem_num_instr;
  1509. if (elem_num_instr > 0) {
  1510. elem_changed = 1;
  1511. }
  1512. }
  1513. if (elem_changed) {
  1514. if (prog) {
  1515. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1516. instr.bumpdepth.parent_idx = idx;
  1517. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1518. prog->instrs[prog->num_instrs++] = instr;
  1519. }
  1520. (*out_num_instr)++;
  1521. }
  1522. }
  1523. } break;
  1524. case NCDVAL_MAP: {
  1525. struct NCDVal__map *map_e = ptr;
  1526. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  1527. int key_changed = 0;
  1528. int val_changed = 0;
  1529. if (map_e->elems[i].key_idx < -1) {
  1530. if (prog) {
  1531. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1532. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  1533. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1534. prog->instrs[prog->num_instrs++] = instr;
  1535. }
  1536. (*out_num_instr)++;
  1537. key_changed = 1;
  1538. } else {
  1539. size_t key_num_instr;
  1540. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  1541. (*out_num_instr) += key_num_instr;
  1542. if (key_num_instr > 0) {
  1543. key_changed = 1;
  1544. }
  1545. }
  1546. if (map_e->elems[i].val_idx < -1) {
  1547. if (prog) {
  1548. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1549. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  1550. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1551. prog->instrs[prog->num_instrs++] = instr;
  1552. }
  1553. (*out_num_instr)++;
  1554. val_changed = 1;
  1555. } else {
  1556. size_t val_num_instr;
  1557. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  1558. (*out_num_instr) += val_num_instr;
  1559. if (val_num_instr > 0) {
  1560. val_changed = 1;
  1561. }
  1562. }
  1563. if (key_changed) {
  1564. if (prog) {
  1565. instr.type = NCDVAL_INSTR_REINSERT;
  1566. instr.reinsert.mapidx = idx;
  1567. instr.reinsert.elempos = i;
  1568. prog->instrs[prog->num_instrs++] = instr;
  1569. }
  1570. (*out_num_instr)++;
  1571. if (prog) {
  1572. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1573. instr.bumpdepth.parent_idx = idx;
  1574. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1575. prog->instrs[prog->num_instrs++] = instr;
  1576. }
  1577. (*out_num_instr)++;
  1578. }
  1579. if (val_changed) {
  1580. if (prog) {
  1581. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1582. instr.bumpdepth.parent_idx = idx;
  1583. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1584. prog->instrs[prog->num_instrs++] = instr;
  1585. }
  1586. (*out_num_instr)++;
  1587. }
  1588. }
  1589. } break;
  1590. default: ASSERT(0);
  1591. }
  1592. }
  1593. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  1594. {
  1595. NCDVal__AssertVal(val);
  1596. ASSERT(!NCDVal_IsPlaceholder(val))
  1597. size_t num_instrs;
  1598. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  1599. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  1600. BLog(BLOG_ERROR, "BAllocArray failed");
  1601. return 0;
  1602. }
  1603. o->num_instrs = 0;
  1604. size_t num_instrs2;
  1605. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  1606. ASSERT(num_instrs2 == num_instrs)
  1607. ASSERT(o->num_instrs == num_instrs)
  1608. return 1;
  1609. }
  1610. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  1611. {
  1612. BFree(o->instrs);
  1613. }
  1614. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  1615. {
  1616. NCDVal__AssertMem(mem);
  1617. ASSERT(replace)
  1618. for (size_t i = 0; i < prog.num_instrs; i++) {
  1619. struct NCDVal__instr instr = prog.instrs[i];
  1620. switch (instr.type) {
  1621. case NCDVAL_INSTR_PLACEHOLDER: {
  1622. #ifndef NDEBUG
  1623. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1624. ASSERT(*check_plptr < -1)
  1625. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  1626. #endif
  1627. NCDValRef repval;
  1628. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  1629. return 0;
  1630. }
  1631. ASSERT(repval.mem == mem)
  1632. if (NCDValMem__NeedRegisterLink(mem, repval.idx)) {
  1633. NCDValMem__RegisterLink(mem, repval.idx, instr.placeholder.plidx);
  1634. }
  1635. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1636. *plptr = repval.idx;
  1637. } break;
  1638. case NCDVAL_INSTR_REINSERT: {
  1639. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  1640. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  1641. ASSERT(map_e->type == NCDVAL_MAP)
  1642. ASSERT(instr.reinsert.elempos >= 0)
  1643. ASSERT(instr.reinsert.elempos < map_e->count)
  1644. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  1645. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  1646. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  1647. BLog(BLOG_ERROR, "duplicate key in map");
  1648. return 0;
  1649. }
  1650. } break;
  1651. case NCDVAL_INSTR_BUMPDEPTH: {
  1652. NCDVal__AssertValOnly(mem, instr.bumpdepth.parent_idx);
  1653. int *parent_type_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.parent_idx);
  1654. NCDVal__idx *child_type_idx_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.child_idx_idx);
  1655. NCDVal__AssertValOnly(mem, *child_type_idx_ptr);
  1656. int *child_type_ptr = NCDValMem__BufAt(mem, *child_type_idx_ptr);
  1657. if (!bump_depth(parent_type_ptr, get_depth(*child_type_ptr))) {
  1658. BLog(BLOG_ERROR, "depth limit exceeded");
  1659. return 0;
  1660. }
  1661. } break;
  1662. default: ASSERT(0);
  1663. }
  1664. }
  1665. return 1;
  1666. }