NCDVal.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/bsize.h>
  35. #include <misc/balloc.h>
  36. #include <base/BLog.h>
  37. #include "NCDVal.h"
  38. #include <generated/blog_channel_NCDVal.h>
  39. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  40. {
  41. ASSERT(idx >= 0)
  42. ASSERT(idx < o->used)
  43. return (o->buf ? o->buf : o->fastbuf) + idx;
  44. }
  45. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, bsize_t alloc_size, NCDVal__idx align)
  46. {
  47. if (alloc_size.is_overflow) {
  48. return -1;
  49. }
  50. NCDVal__idx mod = o->used % align;
  51. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  52. if (alloc_size.value > NCDVAL_MAXIDX - align_extra) {
  53. return -1;
  54. }
  55. NCDVal__idx aligned_alloc_size = align_extra + alloc_size.value;
  56. if (aligned_alloc_size > o->size - o->used) {
  57. NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE);
  58. while (aligned_alloc_size > newsize - o->used) {
  59. if (newsize > NCDVAL_MAXIDX / 2) {
  60. return -1;
  61. }
  62. newsize *= 2;
  63. }
  64. char *newbuf;
  65. if (!o->buf) {
  66. newbuf = malloc(newsize);
  67. if (!newbuf) {
  68. return -1;
  69. }
  70. memcpy(newbuf, o->fastbuf, o->used);
  71. } else {
  72. newbuf = realloc(o->buf, newsize);
  73. if (!newbuf) {
  74. return -1;
  75. }
  76. }
  77. o->buf = newbuf;
  78. o->size = newsize;
  79. }
  80. NCDVal__idx idx = o->used + align_extra;
  81. o->used += aligned_alloc_size;
  82. return idx;
  83. }
  84. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  85. {
  86. ASSERT(idx == -1 || mem)
  87. NCDValRef ref = {mem, idx};
  88. return ref;
  89. }
  90. static void NCDVal__AssertMem (NCDValMem *mem)
  91. {
  92. ASSERT(mem)
  93. ASSERT(mem->size >= 0)
  94. ASSERT(mem->used >= 0)
  95. ASSERT(mem->used <= mem->size)
  96. ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE)
  97. ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE)
  98. }
  99. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  100. {
  101. const char *e_cbuf = e_buf;
  102. char *buf = (mem->buf ? mem->buf : mem->fastbuf);
  103. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  104. }
  105. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  106. {
  107. // placeholders
  108. if (idx < -1) {
  109. return;
  110. }
  111. ASSERT(idx >= 0)
  112. ASSERT(idx + sizeof(int) <= mem->used)
  113. #ifndef NDEBUG
  114. int *type_ptr = NCDValMem__BufAt(mem, idx);
  115. switch (*type_ptr) {
  116. case NCDVAL_STRING: {
  117. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  118. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  119. ASSERT(str_e->length >= 0)
  120. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  121. } break;
  122. case NCDVAL_LIST: {
  123. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  124. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  125. ASSERT(list_e->maxcount >= 0)
  126. ASSERT(list_e->count >= 0)
  127. ASSERT(list_e->count <= list_e->maxcount)
  128. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  129. } break;
  130. case NCDVAL_MAP: {
  131. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  132. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  133. ASSERT(map_e->maxcount >= 0)
  134. ASSERT(map_e->count >= 0)
  135. ASSERT(map_e->count <= map_e->maxcount)
  136. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  137. } break;
  138. default: ASSERT(0);
  139. }
  140. #endif
  141. }
  142. static void NCDVal__AssertVal (NCDValRef val)
  143. {
  144. NCDVal__AssertMem(val.mem);
  145. NCDVal__AssertValOnly(val.mem, val.idx);
  146. }
  147. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  148. {
  149. ASSERT(elemidx >= 0 || elemidx == -1)
  150. NCDValMapElem me = {elemidx};
  151. return me;
  152. }
  153. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  154. {
  155. #ifndef NDEBUG
  156. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  157. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  158. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  159. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  160. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  161. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  162. #endif
  163. }
  164. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  165. {
  166. ASSERT(NCDVal_IsMap(map))
  167. NCDVal__MapAssertElemOnly(map, me.elemidx);
  168. }
  169. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  170. {
  171. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  172. }
  173. #include "NCDVal_maptree.h"
  174. #include <structure/CAvl_impl.h>
  175. void NCDValMem_Init (NCDValMem *o)
  176. {
  177. o->buf = NULL;
  178. o->size = NCDVAL_FASTBUF_SIZE;
  179. o->used = 0;
  180. }
  181. void NCDValMem_Free (NCDValMem *o)
  182. {
  183. NCDVal__AssertMem(o);
  184. if (o->buf) {
  185. BFree(o->buf);
  186. }
  187. }
  188. int NCDValMem_FreeExport (NCDValMem *o, char **out_data, size_t *out_len)
  189. {
  190. NCDVal__AssertMem(o);
  191. ASSERT(out_data)
  192. ASSERT(out_len)
  193. if (o->buf) {
  194. *out_data = o->buf;
  195. } else {
  196. if (!(*out_data = BAlloc(o->used))) {
  197. return 0;
  198. }
  199. memcpy(*out_data, o->fastbuf, o->used);
  200. }
  201. *out_len = o->used;
  202. return 1;
  203. }
  204. int NCDValMem_InitImport (NCDValMem *o, const char *data, size_t len)
  205. {
  206. ASSERT(data)
  207. ASSERT(len <= NCDVAL_MAXIDX)
  208. if (len <= NCDVAL_FASTBUF_SIZE) {
  209. memcpy(o->fastbuf, data, len);
  210. o->buf = NULL;
  211. o->size = NCDVAL_FASTBUF_SIZE;
  212. } else {
  213. size_t cap = len;
  214. if (cap < NCDVAL_FIRST_SIZE) {
  215. cap = NCDVAL_FIRST_SIZE;
  216. }
  217. if (!(o->buf = BAlloc(cap))) {
  218. return 0;
  219. }
  220. memcpy(o->buf, data, len);
  221. o->size = cap;
  222. }
  223. o->used = len;
  224. return 1;
  225. }
  226. void NCDVal_Assert (NCDValRef val)
  227. {
  228. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  229. }
  230. int NCDVal_IsInvalid (NCDValRef val)
  231. {
  232. NCDVal_Assert(val);
  233. return (val.idx == -1);
  234. }
  235. int NCDVal_IsPlaceholder (NCDValRef val)
  236. {
  237. NCDVal_Assert(val);
  238. return (val.idx < -1);
  239. }
  240. int NCDVal_Type (NCDValRef val)
  241. {
  242. NCDVal__AssertVal(val);
  243. if (val.idx < -1) {
  244. return NCDVAL_PLACEHOLDER;
  245. }
  246. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  247. return *type_ptr;
  248. }
  249. NCDValRef NCDVal_NewInvalid (void)
  250. {
  251. NCDValRef ref = {NULL, -1};
  252. return ref;
  253. }
  254. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  255. {
  256. NCDVal__AssertMem(mem);
  257. ASSERT(plid >= 0)
  258. ASSERT(NCDVAL_MINIDX + plid < -1)
  259. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  260. return ref;
  261. }
  262. int NCDVal_PlaceholderId (NCDValRef val)
  263. {
  264. ASSERT(NCDVal_IsPlaceholder(val))
  265. return (val.idx - NCDVAL_MINIDX);
  266. }
  267. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  268. {
  269. NCDVal__AssertMem(mem);
  270. NCDVal__AssertVal(val);
  271. switch (NCDVal_Type(val)) {
  272. case NCDVAL_STRING: {
  273. size_t len = NCDVal_StringLength(val);
  274. NCDValRef copy = NCDVal_NewStringUninitialized(mem, len);
  275. if (NCDVal_IsInvalid(copy)) {
  276. goto fail;
  277. }
  278. memcpy((char *)NCDVal_StringValue(copy), NCDVal_StringValue(val), len);
  279. return copy;
  280. } break;
  281. case NCDVAL_LIST: {
  282. size_t count = NCDVal_ListCount(val);
  283. NCDValRef copy = NCDVal_NewList(mem, count);
  284. if (NCDVal_IsInvalid(copy)) {
  285. goto fail;
  286. }
  287. for (size_t i = 0; i < count; i++) {
  288. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal_ListGet(val, i));
  289. if (NCDVal_IsInvalid(elem_copy)) {
  290. goto fail;
  291. }
  292. NCDVal_ListAppend(copy, elem_copy);
  293. }
  294. return copy;
  295. } break;
  296. case NCDVAL_MAP: {
  297. size_t count = NCDVal_MapCount(val);
  298. NCDValRef copy = NCDVal_NewMap(mem, count);
  299. if (NCDVal_IsInvalid(copy)) {
  300. goto fail;
  301. }
  302. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  303. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  304. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  305. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  306. goto fail;
  307. }
  308. int res = NCDVal_MapInsert(copy, key_copy, val_copy);
  309. ASSERT(res)
  310. }
  311. return copy;
  312. } break;
  313. case NCDVAL_PLACEHOLDER: {
  314. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  315. } break;
  316. default: ASSERT(0);
  317. }
  318. ASSERT(0);
  319. fail:
  320. return NCDVal_NewInvalid();
  321. }
  322. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  323. {
  324. NCDVal__AssertVal(val1);
  325. NCDVal__AssertVal(val2);
  326. int type1 = NCDVal_Type(val1);
  327. int type2 = NCDVal_Type(val2);
  328. if (type1 != type2) {
  329. return (type1 > type2) - (type1 < type2);
  330. }
  331. switch (type1) {
  332. case NCDVAL_STRING: {
  333. size_t len1 = NCDVal_StringLength(val1);
  334. size_t len2 = NCDVal_StringLength(val2);
  335. size_t min_len = len1 < len2 ? len1 : len2;
  336. int cmp = memcmp(NCDVal_StringValue(val1), NCDVal_StringValue(val2), min_len);
  337. if (cmp) {
  338. return (cmp > 0) - (cmp < 0);
  339. }
  340. return (len1 > len2) - (len1 < len2);
  341. } break;
  342. case NCDVAL_LIST: {
  343. size_t count1 = NCDVal_ListCount(val1);
  344. size_t count2 = NCDVal_ListCount(val2);
  345. size_t min_count = count1 < count2 ? count1 : count2;
  346. for (size_t i = 0; i < min_count; i++) {
  347. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  348. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  349. int cmp = NCDVal_Compare(ev1, ev2);
  350. if (cmp) {
  351. return cmp;
  352. }
  353. }
  354. return (count1 > count2) - (count1 < count2);
  355. } break;
  356. case NCDVAL_MAP: {
  357. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  358. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  359. while (1) {
  360. int inv1 = NCDVal_MapElemInvalid(e1);
  361. int inv2 = NCDVal_MapElemInvalid(e2);
  362. if (inv1 || inv2) {
  363. return inv2 - inv1;
  364. }
  365. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  366. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  367. int cmp = NCDVal_Compare(key1, key2);
  368. if (cmp) {
  369. return cmp;
  370. }
  371. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  372. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  373. cmp = NCDVal_Compare(value1, value2);
  374. if (cmp) {
  375. return cmp;
  376. }
  377. e1 = NCDVal_MapOrderedNext(val1, e1);
  378. e2 = NCDVal_MapOrderedNext(val2, e2);
  379. }
  380. } break;
  381. case NCDVAL_PLACEHOLDER: {
  382. int plid1 = NCDVal_PlaceholderId(val1);
  383. int plid2 = NCDVal_PlaceholderId(val2);
  384. return (plid1 > plid2) - (plid1 < plid2);
  385. } break;
  386. default:
  387. ASSERT(0);
  388. return 0;
  389. }
  390. }
  391. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  392. {
  393. NCDVal_Assert(val);
  394. NCDValSafeRef sval = {val.idx};
  395. return sval;
  396. }
  397. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  398. {
  399. NCDVal__AssertMem(mem);
  400. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  401. NCDValRef val = {mem, sval.idx};
  402. return val;
  403. }
  404. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  405. {
  406. NCDVal__AssertMem(mem);
  407. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  408. NCDValRef val2 = {mem, val.idx};
  409. return val2;
  410. }
  411. int NCDVal_IsString (NCDValRef val)
  412. {
  413. NCDVal__AssertVal(val);
  414. return NCDVal_Type(val) == NCDVAL_STRING;
  415. }
  416. int NCDVal_IsStringNoNulls (NCDValRef val)
  417. {
  418. NCDVal__AssertVal(val);
  419. return NCDVal_Type(val) == NCDVAL_STRING && strlen(NCDVal_StringValue(val)) == NCDVal_StringLength(val);
  420. }
  421. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  422. {
  423. NCDVal__AssertMem(mem);
  424. ASSERT(data)
  425. NCDVal_AssertExternal(mem, data, strlen(data));
  426. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  427. }
  428. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  429. {
  430. NCDVal__AssertMem(mem);
  431. ASSERT(len == 0 || data)
  432. NCDVal_AssertExternal(mem, data, len);
  433. if (len == SIZE_MAX) {
  434. goto fail;
  435. }
  436. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  437. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  438. if (idx < 0) {
  439. goto fail;
  440. }
  441. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  442. str_e->type = NCDVAL_STRING;
  443. str_e->length = len;
  444. if (len > 0) {
  445. memcpy(str_e->data, data, len);
  446. }
  447. str_e->data[len] = '\0';
  448. return NCDVal__Ref(mem, idx);
  449. fail:
  450. return NCDVal_NewInvalid();
  451. }
  452. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  453. {
  454. NCDVal__AssertMem(mem);
  455. if (len == SIZE_MAX) {
  456. goto fail;
  457. }
  458. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__string)), bsize_fromsize(len + 1));
  459. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  460. if (idx < 0) {
  461. goto fail;
  462. }
  463. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  464. str_e->type = NCDVAL_STRING;
  465. str_e->length = len;
  466. str_e->data[len] = '\0';
  467. return NCDVal__Ref(mem, idx);
  468. fail:
  469. return NCDVal_NewInvalid();
  470. }
  471. const char * NCDVal_StringValue (NCDValRef string)
  472. {
  473. ASSERT(NCDVal_IsString(string))
  474. struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx);
  475. return str_e->data;
  476. }
  477. size_t NCDVal_StringLength (NCDValRef string)
  478. {
  479. ASSERT(NCDVal_IsString(string))
  480. struct NCDVal__string *str_e = NCDValMem__BufAt(string.mem, string.idx);
  481. return str_e->length;
  482. }
  483. int NCDVal_StringHasNulls (NCDValRef string)
  484. {
  485. ASSERT(NCDVal_IsString(string))
  486. return strlen(NCDVal_StringValue(string)) != NCDVal_StringLength(string);
  487. }
  488. int NCDVal_StringEquals (NCDValRef string, const char *data)
  489. {
  490. ASSERT(NCDVal_IsString(string))
  491. ASSERT(data)
  492. return !NCDVal_StringHasNulls(string) && !strcmp(NCDVal_StringValue(string), data);
  493. }
  494. int NCDVal_IsList (NCDValRef val)
  495. {
  496. NCDVal__AssertVal(val);
  497. return NCDVal_Type(val) == NCDVAL_LIST;
  498. }
  499. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  500. {
  501. NCDVal__AssertMem(mem);
  502. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__list)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(NCDVal__idx))));
  503. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  504. if (idx < 0) {
  505. goto fail;
  506. }
  507. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  508. list_e->type = NCDVAL_LIST;
  509. list_e->maxcount = maxcount;
  510. list_e->count = 0;
  511. return NCDVal__Ref(mem, idx);
  512. fail:
  513. return NCDVal_NewInvalid();
  514. }
  515. void NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  516. {
  517. ASSERT(NCDVal_IsList(list))
  518. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  519. ASSERT(elem.mem == list.mem)
  520. NCDVal__AssertValOnly(list.mem, elem.idx);
  521. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  522. list_e->elem_indices[list_e->count++] = elem.idx;
  523. }
  524. size_t NCDVal_ListCount (NCDValRef list)
  525. {
  526. ASSERT(NCDVal_IsList(list))
  527. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  528. return list_e->count;
  529. }
  530. size_t NCDVal_ListMaxCount (NCDValRef list)
  531. {
  532. ASSERT(NCDVal_IsList(list))
  533. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  534. return list_e->maxcount;
  535. }
  536. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  537. {
  538. ASSERT(NCDVal_IsList(list))
  539. ASSERT(pos < NCDVal_ListCount(list))
  540. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  541. ASSERT(pos < list_e->count)
  542. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  543. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  544. }
  545. int NCDVal_ListRead (NCDValRef list, int num, ...)
  546. {
  547. ASSERT(NCDVal_IsList(list))
  548. ASSERT(num >= 0)
  549. size_t count = NCDVal_ListCount(list);
  550. if (num != count) {
  551. return 0;
  552. }
  553. va_list ap;
  554. va_start(ap, num);
  555. for (int i = 0; i < num; i++) {
  556. NCDValRef *dest = va_arg(ap, NCDValRef *);
  557. *dest = NCDVal_ListGet(list, i);
  558. }
  559. va_end(ap);
  560. return 1;
  561. }
  562. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  563. {
  564. ASSERT(NCDVal_IsList(list))
  565. ASSERT(num >= 0)
  566. size_t count = NCDVal_ListCount(list);
  567. if (num > count) {
  568. return 0;
  569. }
  570. va_list ap;
  571. va_start(ap, num);
  572. for (int i = 0; i < num; i++) {
  573. NCDValRef *dest = va_arg(ap, NCDValRef *);
  574. *dest = NCDVal_ListGet(list, i);
  575. }
  576. va_end(ap);
  577. return 1;
  578. }
  579. int NCDVal_IsMap (NCDValRef val)
  580. {
  581. NCDVal__AssertVal(val);
  582. return NCDVal_Type(val) == NCDVAL_MAP;
  583. }
  584. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  585. {
  586. NCDVal__AssertMem(mem);
  587. bsize_t size = bsize_add(bsize_fromsize(sizeof(struct NCDVal__map)), bsize_mul(bsize_fromsize(maxcount), bsize_fromsize(sizeof(struct NCDVal__mapelem))));
  588. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  589. if (idx < 0) {
  590. goto fail;
  591. }
  592. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  593. map_e->type = NCDVAL_MAP;
  594. map_e->maxcount = maxcount;
  595. map_e->count = 0;
  596. NCDVal__MapTree_Init(&map_e->tree);
  597. return NCDVal__Ref(mem, idx);
  598. fail:
  599. return NCDVal_NewInvalid();
  600. }
  601. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val)
  602. {
  603. ASSERT(NCDVal_IsMap(map))
  604. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  605. ASSERT(key.mem == map.mem)
  606. ASSERT(val.mem == map.mem)
  607. NCDVal__AssertValOnly(map.mem, key.idx);
  608. NCDVal__AssertValOnly(map.mem, val.idx);
  609. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  610. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  611. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  612. ASSERT(me_e == &map_e->elems[map_e->count])
  613. me_e->key_idx = key.idx;
  614. me_e->val_idx = val.idx;
  615. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  616. if (!res) {
  617. return 0;
  618. }
  619. map_e->count++;
  620. return 1;
  621. }
  622. size_t NCDVal_MapCount (NCDValRef map)
  623. {
  624. ASSERT(NCDVal_IsMap(map))
  625. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  626. return map_e->count;
  627. }
  628. size_t NCDVal_MapMaxCount (NCDValRef map)
  629. {
  630. ASSERT(NCDVal_IsMap(map))
  631. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  632. return map_e->maxcount;
  633. }
  634. int NCDVal_MapElemInvalid (NCDValMapElem me)
  635. {
  636. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  637. return me.elemidx < 0;
  638. }
  639. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  640. {
  641. ASSERT(NCDVal_IsMap(map))
  642. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  643. if (map_e->count == 0) {
  644. return NCDVal__MapElem(-1);
  645. }
  646. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  647. NCDVal__MapAssertElemOnly(map, elemidx);
  648. return NCDVal__MapElem(elemidx);
  649. }
  650. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  651. {
  652. NCDVal__MapAssertElem(map, me);
  653. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  654. ASSERT(map_e->count > 0)
  655. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  656. ASSERT(me.elemidx <= last_elemidx)
  657. if (me.elemidx == last_elemidx) {
  658. return NCDVal__MapElem(-1);
  659. }
  660. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  661. NCDVal__MapAssertElemOnly(map, elemidx);
  662. return NCDVal__MapElem(elemidx);
  663. }
  664. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  665. {
  666. ASSERT(NCDVal_IsMap(map))
  667. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  668. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  669. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  670. return NCDVal__MapElem(ref.link);
  671. }
  672. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  673. {
  674. NCDVal__MapAssertElem(map, me);
  675. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  676. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  677. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  678. return NCDVal__MapElem(ref.link);
  679. }
  680. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  681. {
  682. NCDVal__MapAssertElem(map, me);
  683. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  684. return NCDVal__Ref(map.mem, me_e->key_idx);
  685. }
  686. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  687. {
  688. NCDVal__MapAssertElem(map, me);
  689. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  690. return NCDVal__Ref(map.mem, me_e->val_idx);
  691. }
  692. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  693. {
  694. ASSERT(NCDVal_IsMap(map))
  695. NCDVal__AssertVal(key);
  696. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  697. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  698. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  699. return NCDVal__MapElem(ref.link);
  700. }
  701. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  702. {
  703. ASSERT(idx >= 0)
  704. NCDVal__AssertValOnly(mem, idx);
  705. ASSERT(out_num_instr)
  706. *out_num_instr = 0;
  707. void *ptr = NCDValMem__BufAt(mem, idx);
  708. struct NCDVal__instr instr;
  709. switch (*((int *)(ptr))) {
  710. case NCDVAL_STRING: {
  711. } break;
  712. case NCDVAL_LIST: {
  713. struct NCDVal__list *list_e = ptr;
  714. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  715. if (list_e->elem_indices[i] < -1) {
  716. if (prog) {
  717. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  718. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  719. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  720. prog->instrs[prog->num_instrs++] = instr;
  721. }
  722. (*out_num_instr)++;
  723. } else {
  724. size_t elem_num_instr;
  725. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  726. (*out_num_instr) += elem_num_instr;
  727. }
  728. }
  729. } break;
  730. case NCDVAL_MAP: {
  731. struct NCDVal__map *map_e = ptr;
  732. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  733. int need_reinsert = 0;
  734. if (map_e->elems[i].key_idx < -1) {
  735. if (prog) {
  736. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  737. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  738. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  739. prog->instrs[prog->num_instrs++] = instr;
  740. }
  741. (*out_num_instr)++;
  742. need_reinsert = 1;
  743. } else {
  744. size_t key_num_instr;
  745. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  746. (*out_num_instr) += key_num_instr;
  747. if (key_num_instr > 0) {
  748. need_reinsert = 1;
  749. }
  750. }
  751. if (map_e->elems[i].val_idx < -1) {
  752. if (prog) {
  753. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  754. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  755. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  756. prog->instrs[prog->num_instrs++] = instr;
  757. }
  758. (*out_num_instr)++;
  759. } else {
  760. size_t val_num_instr;
  761. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  762. (*out_num_instr) += val_num_instr;
  763. }
  764. if (need_reinsert) {
  765. if (prog) {
  766. instr.type = NCDVAL_INSTR_REINSERT;
  767. instr.reinsert.mapidx = idx;
  768. instr.reinsert.elempos = i;
  769. prog->instrs[prog->num_instrs++] = instr;
  770. }
  771. (*out_num_instr)++;
  772. }
  773. }
  774. } break;
  775. default: ASSERT(0);
  776. }
  777. }
  778. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  779. {
  780. NCDVal__AssertVal(val);
  781. ASSERT(!NCDVal_IsPlaceholder(val))
  782. size_t num_instrs;
  783. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  784. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  785. BLog(BLOG_ERROR, "BAllocArray failed");
  786. return 0;
  787. }
  788. o->num_instrs = 0;
  789. size_t num_instrs2;
  790. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  791. ASSERT(num_instrs2 == num_instrs)
  792. ASSERT(o->num_instrs == num_instrs)
  793. return 1;
  794. }
  795. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  796. {
  797. BFree(o->instrs);
  798. }
  799. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  800. {
  801. NCDVal__AssertMem(mem);
  802. ASSERT(replace)
  803. for (size_t i = 0; i < prog.num_instrs; i++) {
  804. struct NCDVal__instr instr = prog.instrs[i];
  805. if (instr.type == NCDVAL_INSTR_PLACEHOLDER) {
  806. #ifndef NDEBUG
  807. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  808. ASSERT(*check_plptr < -1)
  809. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  810. #endif
  811. NCDValRef repval;
  812. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  813. return 0;
  814. }
  815. ASSERT(repval.mem == mem)
  816. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  817. *plptr = repval.idx;
  818. } else {
  819. ASSERT(instr.type == NCDVAL_INSTR_REINSERT)
  820. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  821. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  822. ASSERT(map_e->type == NCDVAL_MAP)
  823. ASSERT(instr.reinsert.elempos >= 0)
  824. ASSERT(instr.reinsert.elempos < map_e->count)
  825. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  826. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  827. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  828. BLog(BLOG_ERROR, "duplicate key in map");
  829. return 0;
  830. }
  831. }
  832. }
  833. return 1;
  834. }