NCDVal.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766
  1. /**
  2. * @file NCDVal.c
  3. * @author Ambroz Bizjak <ambrop7@gmail.com>
  4. *
  5. * @section LICENSE
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. * 3. Neither the name of the author nor the
  15. * names of its contributors may be used to endorse or promote products
  16. * derived from this software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  22. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include <string.h>
  30. #include <limits.h>
  31. #include <stdlib.h>
  32. #include <stddef.h>
  33. #include <stdarg.h>
  34. #include <misc/balloc.h>
  35. #include <misc/strdup.h>
  36. #include <misc/offset.h>
  37. #include <structure/CAvl.h>
  38. #include <base/BLog.h>
  39. #include "NCDVal.h"
  40. #include <generated/blog_channel_NCDVal.h>
  41. #define NCDVAL_FIRST_SIZE 256
  42. #define NCDVAL_MAX_DEPTH 32
  43. #define TYPE_MASK_EXTERNAL_TYPE ((1 << 3) - 1)
  44. #define TYPE_MASK_INTERNAL_TYPE ((1 << 5) - 1)
  45. #define TYPE_SHIFT_DEPTH 5
  46. #define STOREDSTRING_TYPE (NCDVAL_STRING | (0 << 3))
  47. #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3))
  48. #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3))
  49. #define NCDVAL_INSTR_PLACEHOLDER 0
  50. #define NCDVAL_INSTR_REINSERT 1
  51. #define NCDVAL_INSTR_BUMPDEPTH 2
  52. struct NCDVal__ref {
  53. NCDVal__idx next;
  54. BRefTarget *target;
  55. };
  56. struct NCDVal__string {
  57. int type;
  58. NCDVal__idx length;
  59. char data[];
  60. };
  61. struct NCDVal__list {
  62. int type;
  63. NCDVal__idx maxcount;
  64. NCDVal__idx count;
  65. NCDVal__idx elem_indices[];
  66. };
  67. struct NCDVal__mapelem {
  68. NCDVal__idx key_idx;
  69. NCDVal__idx val_idx;
  70. NCDVal__idx tree_child[2];
  71. NCDVal__idx tree_parent;
  72. int8_t tree_balance;
  73. };
  74. struct NCDVal__idstring {
  75. int type;
  76. NCD_string_id_t string_id;
  77. NCDStringIndex *string_index;
  78. };
  79. struct NCDVal__externalstring {
  80. int type;
  81. const char *data;
  82. size_t length;
  83. struct NCDVal__ref ref;
  84. };
  85. typedef struct NCDVal__mapelem NCDVal__maptree_entry;
  86. typedef NCDValMem *NCDVal__maptree_arg;
  87. #include "NCDVal_maptree.h"
  88. #include <structure/CAvl_decl.h>
  89. struct NCDVal__map {
  90. int type;
  91. NCDVal__idx maxcount;
  92. NCDVal__idx count;
  93. NCDVal__MapTree tree;
  94. struct NCDVal__mapelem elems[];
  95. };
  96. struct NCDVal__instr {
  97. int type;
  98. union {
  99. struct {
  100. NCDVal__idx plid;
  101. NCDVal__idx plidx;
  102. } placeholder;
  103. struct {
  104. NCDVal__idx mapidx;
  105. NCDVal__idx elempos;
  106. } reinsert;
  107. struct {
  108. NCDVal__idx parent_idx;
  109. NCDVal__idx child_idx_idx;
  110. } bumpdepth;
  111. };
  112. };
  113. static int make_type (int internal_type, int depth)
  114. {
  115. ASSERT(internal_type == NCDVAL_LIST ||
  116. internal_type == NCDVAL_MAP ||
  117. internal_type == STOREDSTRING_TYPE ||
  118. internal_type == IDSTRING_TYPE ||
  119. internal_type == EXTERNALSTRING_TYPE)
  120. ASSERT(depth >= 0)
  121. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  122. return (internal_type | (depth << TYPE_SHIFT_DEPTH));
  123. }
  124. static int get_external_type (int type)
  125. {
  126. return (type & TYPE_MASK_EXTERNAL_TYPE);
  127. }
  128. static int get_internal_type (int type)
  129. {
  130. return (type & TYPE_MASK_INTERNAL_TYPE);
  131. }
  132. static int get_depth (int type)
  133. {
  134. return (type >> TYPE_SHIFT_DEPTH);
  135. }
  136. static int bump_depth (int *type_ptr, int elem_depth)
  137. {
  138. if (get_depth(*type_ptr) < elem_depth + 1) {
  139. if (elem_depth + 1 > NCDVAL_MAX_DEPTH) {
  140. return 0;
  141. }
  142. *type_ptr = make_type(get_internal_type(*type_ptr), elem_depth + 1);
  143. }
  144. return 1;
  145. }
  146. static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx)
  147. {
  148. ASSERT(idx >= 0)
  149. ASSERT(idx < o->used)
  150. return ((o->size == NCDVAL_FASTBUF_SIZE) ? o->fastbuf : o->allocd_buf) + idx;
  151. }
  152. static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, NCDVal__idx alloc_size, NCDVal__idx align)
  153. {
  154. NCDVal__idx mod = o->used % align;
  155. NCDVal__idx align_extra = mod ? (align - mod) : 0;
  156. if (alloc_size > NCDVAL_MAXIDX - align_extra) {
  157. return -1;
  158. }
  159. NCDVal__idx aligned_alloc_size = align_extra + alloc_size;
  160. if (aligned_alloc_size > o->size - o->used) {
  161. NCDVal__idx newsize = (o->size == NCDVAL_FASTBUF_SIZE) ? NCDVAL_FIRST_SIZE : o->size;
  162. while (aligned_alloc_size > newsize - o->used) {
  163. if (newsize > NCDVAL_MAXIDX / 2) {
  164. return -1;
  165. }
  166. newsize *= 2;
  167. }
  168. char *newbuf;
  169. if (o->size == NCDVAL_FASTBUF_SIZE) {
  170. newbuf = malloc(newsize);
  171. if (!newbuf) {
  172. return -1;
  173. }
  174. memcpy(newbuf, o->fastbuf, o->used);
  175. } else {
  176. newbuf = realloc(o->allocd_buf, newsize);
  177. if (!newbuf) {
  178. return -1;
  179. }
  180. }
  181. o->size = newsize;
  182. o->allocd_buf = newbuf;
  183. }
  184. NCDVal__idx idx = o->used + align_extra;
  185. o->used += aligned_alloc_size;
  186. return idx;
  187. }
  188. static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx)
  189. {
  190. ASSERT(idx == -1 || mem)
  191. NCDValRef ref = {mem, idx};
  192. return ref;
  193. }
  194. static void NCDVal__AssertMem (NCDValMem *mem)
  195. {
  196. ASSERT(mem)
  197. ASSERT(mem->size == NCDVAL_FASTBUF_SIZE || mem->size >= NCDVAL_FIRST_SIZE)
  198. ASSERT(mem->used >= 0)
  199. ASSERT(mem->used <= mem->size)
  200. }
  201. static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len)
  202. {
  203. #ifndef NDEBUG
  204. const char *e_cbuf = e_buf;
  205. char *buf = (mem->size == NCDVAL_FASTBUF_SIZE) ? mem->fastbuf : mem->allocd_buf;
  206. ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf)
  207. #endif
  208. }
  209. static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx)
  210. {
  211. // placeholders
  212. if (idx < -1) {
  213. return;
  214. }
  215. ASSERT(idx >= 0)
  216. ASSERT(idx + sizeof(int) <= mem->used)
  217. #ifndef NDEBUG
  218. int *type_ptr = NCDValMem__BufAt(mem, idx);
  219. ASSERT(get_depth(*type_ptr) >= 0)
  220. ASSERT(get_depth(*type_ptr) <= NCDVAL_MAX_DEPTH)
  221. switch (get_internal_type(*type_ptr)) {
  222. case STOREDSTRING_TYPE: {
  223. ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used)
  224. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  225. ASSERT(str_e->length >= 0)
  226. ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used)
  227. } break;
  228. case NCDVAL_LIST: {
  229. ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used)
  230. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  231. ASSERT(list_e->maxcount >= 0)
  232. ASSERT(list_e->count >= 0)
  233. ASSERT(list_e->count <= list_e->maxcount)
  234. ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used)
  235. } break;
  236. case NCDVAL_MAP: {
  237. ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used)
  238. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  239. ASSERT(map_e->maxcount >= 0)
  240. ASSERT(map_e->count >= 0)
  241. ASSERT(map_e->count <= map_e->maxcount)
  242. ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used)
  243. } break;
  244. case IDSTRING_TYPE: {
  245. ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used)
  246. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  247. ASSERT(ids_e->string_id >= 0)
  248. ASSERT(ids_e->string_index)
  249. } break;
  250. case EXTERNALSTRING_TYPE: {
  251. ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used)
  252. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  253. ASSERT(exs_e->data)
  254. ASSERT(!exs_e->ref.target || exs_e->ref.next >= -1)
  255. ASSERT(!exs_e->ref.target || exs_e->ref.next < mem->used)
  256. } break;
  257. default: ASSERT(0);
  258. }
  259. #endif
  260. }
  261. static void NCDVal__AssertVal (NCDValRef val)
  262. {
  263. NCDVal__AssertMem(val.mem);
  264. NCDVal__AssertValOnly(val.mem, val.idx);
  265. }
  266. static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx)
  267. {
  268. ASSERT(elemidx >= 0 || elemidx == -1)
  269. NCDValMapElem me = {elemidx};
  270. return me;
  271. }
  272. static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx)
  273. {
  274. #ifndef NDEBUG
  275. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  276. ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems))
  277. ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem))
  278. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  279. NCDVal__AssertValOnly(map.mem, me_e->key_idx);
  280. NCDVal__AssertValOnly(map.mem, me_e->val_idx);
  281. #endif
  282. }
  283. static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me)
  284. {
  285. ASSERT(NCDVal_IsMap(map))
  286. NCDVal__MapAssertElemOnly(map, me.elemidx);
  287. }
  288. static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos)
  289. {
  290. return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem);
  291. }
  292. static int NCDVal__Depth (NCDValRef val)
  293. {
  294. ASSERT(val.idx != -1)
  295. // handle placeholders
  296. if (val.idx < 0) {
  297. return 0;
  298. }
  299. int *elem_type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  300. int depth = get_depth(*elem_type_ptr);
  301. ASSERT(depth >= 0)
  302. ASSERT(depth <= NCDVAL_MAX_DEPTH)
  303. return depth;
  304. }
  305. static void NCDValMem__RegisterRef (NCDValMem *o, NCDVal__idx refidx, struct NCDVal__ref *ref)
  306. {
  307. ASSERT(ref == NCDValMem__BufAt(o, refidx))
  308. ASSERT(ref->target)
  309. ref->next = o->first_ref;
  310. o->first_ref = refidx;
  311. }
  312. #include "NCDVal_maptree.h"
  313. #include <structure/CAvl_impl.h>
  314. void NCDValMem_Init (NCDValMem *o)
  315. {
  316. o->size = NCDVAL_FASTBUF_SIZE;
  317. o->used = 0;
  318. o->first_ref = -1;
  319. }
  320. void NCDValMem_Free (NCDValMem *o)
  321. {
  322. NCDVal__AssertMem(o);
  323. NCDVal__idx refidx = o->first_ref;
  324. while (refidx != -1) {
  325. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  326. ASSERT(ref->target)
  327. BRefTarget_Deref(ref->target);
  328. refidx = ref->next;
  329. }
  330. if (o->size != NCDVAL_FASTBUF_SIZE) {
  331. BFree(o->allocd_buf);
  332. }
  333. }
  334. int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other)
  335. {
  336. NCDVal__AssertMem(other);
  337. o->size = other->size;
  338. o->used = other->used;
  339. o->first_ref = other->first_ref;
  340. if (other->size == NCDVAL_FASTBUF_SIZE) {
  341. memcpy(o->fastbuf, other->fastbuf, other->used);
  342. } else {
  343. o->allocd_buf = BAlloc(other->size);
  344. if (!o->allocd_buf) {
  345. goto fail0;
  346. }
  347. memcpy(o->allocd_buf, other->allocd_buf, other->used);
  348. }
  349. NCDVal__idx refidx = o->first_ref;
  350. while (refidx != -1) {
  351. struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx);
  352. ASSERT(ref->target)
  353. if (!BRefTarget_Ref(ref->target)) {
  354. goto fail1;
  355. }
  356. refidx = ref->next;
  357. }
  358. return 1;
  359. fail1:;
  360. NCDVal__idx undo_refidx = o->first_ref;
  361. while (undo_refidx != refidx) {
  362. struct NCDVal__ref *ref = NCDValMem__BufAt(o, undo_refidx);
  363. BRefTarget_Deref(ref->target);
  364. undo_refidx = ref->next;
  365. }
  366. if (other->size != NCDVAL_FASTBUF_SIZE) {
  367. BFree(o->allocd_buf);
  368. }
  369. fail0:
  370. return 0;
  371. }
  372. void NCDVal_Assert (NCDValRef val)
  373. {
  374. ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1))
  375. }
  376. int NCDVal_IsInvalid (NCDValRef val)
  377. {
  378. NCDVal_Assert(val);
  379. return (val.idx == -1);
  380. }
  381. int NCDVal_IsPlaceholder (NCDValRef val)
  382. {
  383. NCDVal_Assert(val);
  384. return (val.idx < -1);
  385. }
  386. int NCDVal_Type (NCDValRef val)
  387. {
  388. NCDVal__AssertVal(val);
  389. if (val.idx < -1) {
  390. return NCDVAL_PLACEHOLDER;
  391. }
  392. int *type_ptr = NCDValMem__BufAt(val.mem, val.idx);
  393. return get_external_type(*type_ptr);
  394. }
  395. NCDValRef NCDVal_NewInvalid (void)
  396. {
  397. NCDValRef ref = {NULL, -1};
  398. return ref;
  399. }
  400. NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid)
  401. {
  402. NCDVal__AssertMem(mem);
  403. ASSERT(plid >= 0)
  404. ASSERT(plid < NCDVAL_TOPPLID)
  405. NCDValRef ref = {mem, NCDVAL_MINIDX + plid};
  406. return ref;
  407. }
  408. int NCDVal_PlaceholderId (NCDValRef val)
  409. {
  410. ASSERT(NCDVal_IsPlaceholder(val))
  411. return (val.idx - NCDVAL_MINIDX);
  412. }
  413. NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val)
  414. {
  415. NCDVal__AssertMem(mem);
  416. NCDVal__AssertVal(val);
  417. if (val.idx < -1) {
  418. return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val));
  419. }
  420. void *ptr = NCDValMem__BufAt(val.mem, val.idx);
  421. switch (get_internal_type(*(int *)ptr)) {
  422. case STOREDSTRING_TYPE: {
  423. struct NCDVal__string *str_e = ptr;
  424. NCDVal__idx size = sizeof(struct NCDVal__string) + str_e->length + 1;
  425. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  426. if (idx < 0) {
  427. goto fail;
  428. }
  429. str_e = NCDValMem__BufAt(val.mem, val.idx);
  430. struct NCDVal__string *new_str_e = NCDValMem__BufAt(mem, idx);
  431. memcpy(new_str_e, str_e, size);
  432. return NCDVal__Ref(mem, idx);
  433. } break;
  434. case NCDVAL_LIST: {
  435. struct NCDVal__list *list_e = ptr;
  436. NCDVal__idx size = sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx);
  437. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  438. if (idx < 0) {
  439. goto fail;
  440. }
  441. list_e = NCDValMem__BufAt(val.mem, val.idx);
  442. struct NCDVal__list *new_list_e = NCDValMem__BufAt(mem, idx);
  443. *new_list_e = *list_e;
  444. NCDVal__idx count = list_e->count;
  445. for (NCDVal__idx i = 0; i < count; i++) {
  446. NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal__Ref(val.mem, list_e->elem_indices[i]));
  447. if (NCDVal_IsInvalid(elem_copy)) {
  448. goto fail;
  449. }
  450. list_e = NCDValMem__BufAt(val.mem, val.idx);
  451. new_list_e = NCDValMem__BufAt(mem, idx);
  452. new_list_e->elem_indices[i] = elem_copy.idx;
  453. }
  454. return NCDVal__Ref(mem, idx);
  455. } break;
  456. case NCDVAL_MAP: {
  457. size_t count = NCDVal_MapCount(val);
  458. NCDValRef copy = NCDVal_NewMap(mem, count);
  459. if (NCDVal_IsInvalid(copy)) {
  460. goto fail;
  461. }
  462. for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) {
  463. NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e));
  464. NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e));
  465. if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) {
  466. goto fail;
  467. }
  468. int inserted;
  469. if (!NCDVal_MapInsert(copy, key_copy, val_copy, &inserted)) {
  470. goto fail;
  471. }
  472. ASSERT_EXECUTE(inserted)
  473. }
  474. return copy;
  475. } break;
  476. case IDSTRING_TYPE: {
  477. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  478. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  479. if (idx < 0) {
  480. goto fail;
  481. }
  482. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(val.mem, val.idx);
  483. struct NCDVal__idstring *new_ids_e = NCDValMem__BufAt(mem, idx);
  484. *new_ids_e = *ids_e;
  485. return NCDVal__Ref(mem, idx);
  486. } break;
  487. case EXTERNALSTRING_TYPE: {
  488. struct NCDVal__externalstring *exs_e = ptr;
  489. return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target);
  490. } break;
  491. default: ASSERT(0);
  492. }
  493. ASSERT(0);
  494. fail:
  495. return NCDVal_NewInvalid();
  496. }
  497. int NCDVal_Compare (NCDValRef val1, NCDValRef val2)
  498. {
  499. NCDVal__AssertVal(val1);
  500. NCDVal__AssertVal(val2);
  501. int type1 = NCDVal_Type(val1);
  502. int type2 = NCDVal_Type(val2);
  503. if (type1 != type2) {
  504. return (type1 > type2) - (type1 < type2);
  505. }
  506. switch (type1) {
  507. case NCDVAL_STRING: {
  508. size_t len1 = NCDVal_StringLength(val1);
  509. size_t len2 = NCDVal_StringLength(val2);
  510. size_t min_len = len1 < len2 ? len1 : len2;
  511. int cmp = NCDVal_StringMemCmp(val1, val2, 0, 0, min_len);
  512. if (cmp) {
  513. return (cmp > 0) - (cmp < 0);
  514. }
  515. return (len1 > len2) - (len1 < len2);
  516. } break;
  517. case NCDVAL_LIST: {
  518. size_t count1 = NCDVal_ListCount(val1);
  519. size_t count2 = NCDVal_ListCount(val2);
  520. size_t min_count = count1 < count2 ? count1 : count2;
  521. for (size_t i = 0; i < min_count; i++) {
  522. NCDValRef ev1 = NCDVal_ListGet(val1, i);
  523. NCDValRef ev2 = NCDVal_ListGet(val2, i);
  524. int cmp = NCDVal_Compare(ev1, ev2);
  525. if (cmp) {
  526. return cmp;
  527. }
  528. }
  529. return (count1 > count2) - (count1 < count2);
  530. } break;
  531. case NCDVAL_MAP: {
  532. NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1);
  533. NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2);
  534. while (1) {
  535. int inv1 = NCDVal_MapElemInvalid(e1);
  536. int inv2 = NCDVal_MapElemInvalid(e2);
  537. if (inv1 || inv2) {
  538. return inv2 - inv1;
  539. }
  540. NCDValRef key1 = NCDVal_MapElemKey(val1, e1);
  541. NCDValRef key2 = NCDVal_MapElemKey(val2, e2);
  542. int cmp = NCDVal_Compare(key1, key2);
  543. if (cmp) {
  544. return cmp;
  545. }
  546. NCDValRef value1 = NCDVal_MapElemVal(val1, e1);
  547. NCDValRef value2 = NCDVal_MapElemVal(val2, e2);
  548. cmp = NCDVal_Compare(value1, value2);
  549. if (cmp) {
  550. return cmp;
  551. }
  552. e1 = NCDVal_MapOrderedNext(val1, e1);
  553. e2 = NCDVal_MapOrderedNext(val2, e2);
  554. }
  555. } break;
  556. case NCDVAL_PLACEHOLDER: {
  557. int plid1 = NCDVal_PlaceholderId(val1);
  558. int plid2 = NCDVal_PlaceholderId(val2);
  559. return (plid1 > plid2) - (plid1 < plid2);
  560. } break;
  561. default:
  562. ASSERT(0);
  563. return 0;
  564. }
  565. }
  566. NCDValSafeRef NCDVal_ToSafe (NCDValRef val)
  567. {
  568. NCDVal_Assert(val);
  569. NCDValSafeRef sval = {val.idx};
  570. return sval;
  571. }
  572. NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval)
  573. {
  574. NCDVal__AssertMem(mem);
  575. ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1))
  576. NCDValRef val = {mem, sval.idx};
  577. return val;
  578. }
  579. NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val)
  580. {
  581. NCDVal__AssertMem(mem);
  582. ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1))
  583. NCDValRef val2 = {mem, val.idx};
  584. return val2;
  585. }
  586. int NCDVal_IsSafeRefPlaceholder (NCDValSafeRef sval)
  587. {
  588. return (sval.idx < -1);
  589. }
  590. int NCDVal_GetSafeRefPlaceholderId (NCDValSafeRef sval)
  591. {
  592. ASSERT(NCDVal_IsSafeRefPlaceholder(sval))
  593. return (sval.idx - NCDVAL_MINIDX);
  594. }
  595. int NCDVal_IsString (NCDValRef val)
  596. {
  597. NCDVal__AssertVal(val);
  598. return NCDVal_Type(val) == NCDVAL_STRING;
  599. }
  600. int NCDVal_IsStoredString (NCDValRef val)
  601. {
  602. NCDVal__AssertVal(val);
  603. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == STOREDSTRING_TYPE;
  604. }
  605. int NCDVal_IsIdString (NCDValRef val)
  606. {
  607. NCDVal__AssertVal(val);
  608. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == IDSTRING_TYPE;
  609. }
  610. int NCDVal_IsExternalString (NCDValRef val)
  611. {
  612. NCDVal__AssertVal(val);
  613. return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == EXTERNALSTRING_TYPE;
  614. }
  615. int NCDVal_IsStringNoNulls (NCDValRef val)
  616. {
  617. NCDVal__AssertVal(val);
  618. return NCDVal_Type(val) == NCDVAL_STRING && !NCDVal_StringHasNulls(val);
  619. }
  620. NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data)
  621. {
  622. NCDVal__AssertMem(mem);
  623. ASSERT(data)
  624. NCDVal_AssertExternal(mem, data, strlen(data));
  625. return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data));
  626. }
  627. NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len)
  628. {
  629. NCDVal__AssertMem(mem);
  630. ASSERT(len == 0 || data)
  631. NCDVal_AssertExternal(mem, data, len);
  632. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  633. goto fail;
  634. }
  635. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  636. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  637. if (idx < 0) {
  638. goto fail;
  639. }
  640. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  641. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  642. str_e->length = len;
  643. if (len > 0) {
  644. memcpy(str_e->data, data, len);
  645. }
  646. str_e->data[len] = '\0';
  647. return NCDVal__Ref(mem, idx);
  648. fail:
  649. return NCDVal_NewInvalid();
  650. }
  651. NCDValRef NCDVal_NewStringBinMr (NCDValMem *mem, MemRef data)
  652. {
  653. return NCDVal_NewStringBin(mem, (uint8_t const *)data.ptr, data.len);
  654. }
  655. NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len)
  656. {
  657. NCDVal__AssertMem(mem);
  658. if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) {
  659. goto fail;
  660. }
  661. NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1;
  662. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string));
  663. if (idx < 0) {
  664. goto fail;
  665. }
  666. struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx);
  667. str_e->type = make_type(STOREDSTRING_TYPE, 0);
  668. str_e->length = len;
  669. str_e->data[len] = '\0';
  670. return NCDVal__Ref(mem, idx);
  671. fail:
  672. return NCDVal_NewInvalid();
  673. }
  674. NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index)
  675. {
  676. NCDVal__AssertMem(mem);
  677. ASSERT(string_id >= 0)
  678. ASSERT(string_index)
  679. NCDVal__idx size = sizeof(struct NCDVal__idstring);
  680. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring));
  681. if (idx < 0) {
  682. goto fail;
  683. }
  684. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx);
  685. ids_e->type = make_type(IDSTRING_TYPE, 0);
  686. ids_e->string_id = string_id;
  687. ids_e->string_index = string_index;
  688. return NCDVal__Ref(mem, idx);
  689. fail:
  690. return NCDVal_NewInvalid();
  691. }
  692. NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len,
  693. BRefTarget *ref_target)
  694. {
  695. NCDVal__AssertMem(mem);
  696. ASSERT(data)
  697. NCDVal_AssertExternal(mem, data, len);
  698. NCDVal__idx size = sizeof(struct NCDVal__externalstring);
  699. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__externalstring));
  700. if (idx < 0) {
  701. goto fail;
  702. }
  703. if (ref_target) {
  704. if (!BRefTarget_Ref(ref_target)) {
  705. goto fail;
  706. }
  707. }
  708. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx);
  709. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  710. exs_e->data = data;
  711. exs_e->length = len;
  712. exs_e->ref.target = ref_target;
  713. if (ref_target) {
  714. NCDValMem__RegisterRef(mem, idx + offsetof(struct NCDVal__externalstring, ref), &exs_e->ref);
  715. }
  716. return NCDVal__Ref(mem, idx);
  717. fail:
  718. return NCDVal_NewInvalid();
  719. }
  720. const char * NCDVal_StringData (NCDValRef string)
  721. {
  722. ASSERT(NCDVal_IsString(string))
  723. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  724. switch (get_internal_type(*(int *)ptr)) {
  725. case STOREDSTRING_TYPE: {
  726. struct NCDVal__string *str_e = ptr;
  727. return str_e->data;
  728. } break;
  729. case IDSTRING_TYPE: {
  730. struct NCDVal__idstring *ids_e = ptr;
  731. const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id).ptr;
  732. return value;
  733. } break;
  734. case EXTERNALSTRING_TYPE: {
  735. struct NCDVal__externalstring *exs_e = ptr;
  736. return exs_e->data;
  737. } break;
  738. default:
  739. ASSERT(0);
  740. return NULL;
  741. }
  742. }
  743. size_t NCDVal_StringLength (NCDValRef string)
  744. {
  745. ASSERT(NCDVal_IsString(string))
  746. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  747. switch (get_internal_type(*(int *)ptr)) {
  748. case STOREDSTRING_TYPE: {
  749. struct NCDVal__string *str_e = ptr;
  750. return str_e->length;
  751. } break;
  752. case IDSTRING_TYPE: {
  753. struct NCDVal__idstring *ids_e = ptr;
  754. return NCDStringIndex_Value(ids_e->string_index, ids_e->string_id).len;
  755. } break;
  756. case EXTERNALSTRING_TYPE: {
  757. struct NCDVal__externalstring *exs_e = ptr;
  758. return exs_e->length;
  759. } break;
  760. default:
  761. ASSERT(0);
  762. return 0;
  763. }
  764. }
  765. MemRef NCDVal_StringMemRef (NCDValRef string)
  766. {
  767. ASSERT(NCDVal_IsString(string))
  768. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  769. switch (get_internal_type(*(int *)ptr)) {
  770. case STOREDSTRING_TYPE: {
  771. struct NCDVal__string *str_e = ptr;
  772. return MemRef_Make(str_e->data, str_e->length);
  773. } break;
  774. case IDSTRING_TYPE: {
  775. struct NCDVal__idstring *ids_e = ptr;
  776. return NCDStringIndex_Value(ids_e->string_index, ids_e->string_id);
  777. } break;
  778. case EXTERNALSTRING_TYPE: {
  779. struct NCDVal__externalstring *exs_e = ptr;
  780. return MemRef_Make(exs_e->data, exs_e->length);
  781. } break;
  782. default: {
  783. ASSERT(0);
  784. return MemRef_Make(NULL, 0);
  785. } break;
  786. }
  787. }
  788. int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out)
  789. {
  790. ASSERT(NCDVal_IsString(string))
  791. ASSERT(out)
  792. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  793. switch (get_internal_type(*(int *)ptr)) {
  794. case STOREDSTRING_TYPE: {
  795. struct NCDVal__string *str_e = ptr;
  796. out->data = str_e->data;
  797. out->is_allocated = 0;
  798. return 1;
  799. } break;
  800. case IDSTRING_TYPE: {
  801. struct NCDVal__idstring *ids_e = ptr;
  802. out->data = (char *)NCDStringIndex_Value(ids_e->string_index, ids_e->string_id).ptr;
  803. out->is_allocated = 0;
  804. return 1;
  805. } break;
  806. case EXTERNALSTRING_TYPE: {
  807. struct NCDVal__externalstring *exs_e = ptr;
  808. char *copy = b_strdup_bin(exs_e->data, exs_e->length);
  809. if (!copy) {
  810. return 0;
  811. }
  812. out->data = copy;
  813. out->is_allocated = 1;
  814. return 1;
  815. } break;
  816. default:
  817. ASSERT(0);
  818. return 0;
  819. }
  820. }
  821. NCDValNullTermString NCDValNullTermString_NewDummy (void)
  822. {
  823. NCDValNullTermString nts;
  824. nts.data = NULL;
  825. nts.is_allocated = 0;
  826. return nts;
  827. }
  828. void NCDValNullTermString_Free (NCDValNullTermString *o)
  829. {
  830. if (o->is_allocated) {
  831. BFree(o->data);
  832. }
  833. }
  834. void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id,
  835. NCDStringIndex **out_string_index)
  836. {
  837. ASSERT(NCDVal_IsIdString(idstring))
  838. ASSERT(out_string_id)
  839. ASSERT(out_string_index)
  840. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  841. *out_string_id = ids_e->string_id;
  842. *out_string_index = ids_e->string_index;
  843. }
  844. NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring)
  845. {
  846. ASSERT(NCDVal_IsIdString(idstring))
  847. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  848. return ids_e->string_id;
  849. }
  850. NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring)
  851. {
  852. ASSERT(NCDVal_IsIdString(idstring))
  853. struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx);
  854. return ids_e->string_index;
  855. }
  856. BRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring)
  857. {
  858. ASSERT(NCDVal_IsExternalString(externalstring))
  859. struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(externalstring.mem, externalstring.idx);
  860. return exs_e->ref.target;
  861. }
  862. int NCDVal_StringHasNulls (NCDValRef string)
  863. {
  864. ASSERT(NCDVal_IsString(string))
  865. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  866. switch (get_internal_type(*(int *)ptr)) {
  867. case IDSTRING_TYPE: {
  868. struct NCDVal__idstring *ids_e = ptr;
  869. return NCDStringIndex_HasNulls(ids_e->string_index, ids_e->string_id);
  870. } break;
  871. case STOREDSTRING_TYPE:
  872. case EXTERNALSTRING_TYPE: {
  873. return MemRef_FindChar(NCDVal_StringMemRef(string), '\0', NULL);
  874. } break;
  875. default:
  876. ASSERT(0);
  877. return 0;
  878. }
  879. }
  880. int NCDVal_StringEquals (NCDValRef string, const char *data)
  881. {
  882. ASSERT(NCDVal_IsString(string))
  883. ASSERT(data)
  884. size_t data_len = strlen(data);
  885. return NCDVal_StringLength(string) == data_len && NCDVal_StringRegionEquals(string, 0, data_len, data);
  886. }
  887. int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id,
  888. NCDStringIndex *string_index)
  889. {
  890. ASSERT(NCDVal_IsString(string))
  891. ASSERT(string_id >= 0)
  892. ASSERT(string_index)
  893. void *ptr = NCDValMem__BufAt(string.mem, string.idx);
  894. switch (get_internal_type(*(int *)ptr)) {
  895. case STOREDSTRING_TYPE: {
  896. struct NCDVal__string *str_e = ptr;
  897. return MemRef_Equal(NCDStringIndex_Value(string_index, string_id), MemRef_Make(str_e->data, str_e->length));
  898. } break;
  899. case IDSTRING_TYPE: {
  900. struct NCDVal__idstring *ids_e = ptr;
  901. ASSERT(ids_e->string_index == string_index)
  902. return ids_e->string_id == string_id;
  903. } break;
  904. case EXTERNALSTRING_TYPE: {
  905. struct NCDVal__externalstring *exs_e = ptr;
  906. return MemRef_Equal(NCDStringIndex_Value(string_index, string_id), MemRef_Make(exs_e->data, exs_e->length));
  907. } break;
  908. default:
  909. ASSERT(0);
  910. return 0;
  911. }
  912. }
  913. int NCDVal_StringMemCmp (NCDValRef string1, NCDValRef string2, size_t start1, size_t start2, size_t length)
  914. {
  915. ASSERT(NCDVal_IsString(string1))
  916. ASSERT(NCDVal_IsString(string2))
  917. ASSERT(start1 <= NCDVal_StringLength(string1))
  918. ASSERT(start2 <= NCDVal_StringLength(string2))
  919. ASSERT(length <= NCDVal_StringLength(string1) - start1)
  920. ASSERT(length <= NCDVal_StringLength(string2) - start2)
  921. return memcmp(NCDVal_StringData(string1) + start1, NCDVal_StringData(string2) + start2, length);
  922. }
  923. void NCDVal_StringCopyOut (NCDValRef string, size_t start, size_t length, char *dst)
  924. {
  925. ASSERT(NCDVal_IsString(string))
  926. ASSERT(start <= NCDVal_StringLength(string))
  927. ASSERT(length <= NCDVal_StringLength(string) - start)
  928. memcpy(dst, NCDVal_StringData(string) + start, length);
  929. }
  930. int NCDVal_StringRegionEquals (NCDValRef string, size_t start, size_t length, const char *data)
  931. {
  932. ASSERT(NCDVal_IsString(string))
  933. ASSERT(start <= NCDVal_StringLength(string))
  934. ASSERT(length <= NCDVal_StringLength(string) - start)
  935. return !memcmp(NCDVal_StringData(string) + start, data, length);
  936. }
  937. int NCDVal_IsList (NCDValRef val)
  938. {
  939. NCDVal__AssertVal(val);
  940. return NCDVal_Type(val) == NCDVAL_LIST;
  941. }
  942. NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount)
  943. {
  944. NCDVal__AssertMem(mem);
  945. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__list)) / sizeof(NCDVal__idx)) {
  946. goto fail;
  947. }
  948. NCDVal__idx size = sizeof(struct NCDVal__list) + maxcount * sizeof(NCDVal__idx);
  949. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list));
  950. if (idx < 0) {
  951. goto fail;
  952. }
  953. struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx);
  954. list_e->type = make_type(NCDVAL_LIST, 0);
  955. list_e->maxcount = maxcount;
  956. list_e->count = 0;
  957. return NCDVal__Ref(mem, idx);
  958. fail:
  959. return NCDVal_NewInvalid();
  960. }
  961. int NCDVal_ListAppend (NCDValRef list, NCDValRef elem)
  962. {
  963. ASSERT(NCDVal_IsList(list))
  964. ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list))
  965. ASSERT(elem.mem == list.mem)
  966. NCDVal__AssertValOnly(list.mem, elem.idx);
  967. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  968. int new_type = list_e->type;
  969. if (!bump_depth(&new_type, NCDVal__Depth(elem))) {
  970. return 0;
  971. }
  972. list_e->type = new_type;
  973. list_e->elem_indices[list_e->count++] = elem.idx;
  974. return 1;
  975. }
  976. size_t NCDVal_ListCount (NCDValRef list)
  977. {
  978. ASSERT(NCDVal_IsList(list))
  979. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  980. return list_e->count;
  981. }
  982. size_t NCDVal_ListMaxCount (NCDValRef list)
  983. {
  984. ASSERT(NCDVal_IsList(list))
  985. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  986. return list_e->maxcount;
  987. }
  988. NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos)
  989. {
  990. ASSERT(NCDVal_IsList(list))
  991. ASSERT(pos < NCDVal_ListCount(list))
  992. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  993. ASSERT(pos < list_e->count)
  994. NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]);
  995. return NCDVal__Ref(list.mem, list_e->elem_indices[pos]);
  996. }
  997. int NCDVal_ListRead (NCDValRef list, int num, ...)
  998. {
  999. ASSERT(NCDVal_IsList(list))
  1000. ASSERT(num >= 0)
  1001. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1002. if (num != list_e->count) {
  1003. return 0;
  1004. }
  1005. va_list ap;
  1006. va_start(ap, num);
  1007. for (int i = 0; i < num; i++) {
  1008. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1009. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1010. }
  1011. va_end(ap);
  1012. return 1;
  1013. }
  1014. int NCDVal_ListReadStart (NCDValRef list, int start, int num, ...)
  1015. {
  1016. ASSERT(NCDVal_IsList(list))
  1017. ASSERT(start <= NCDVal_ListCount(list))
  1018. ASSERT(num >= 0)
  1019. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1020. if (num != list_e->count - start) {
  1021. return 0;
  1022. }
  1023. va_list ap;
  1024. va_start(ap, num);
  1025. for (int i = 0; i < num; i++) {
  1026. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1027. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[start + i]);
  1028. }
  1029. va_end(ap);
  1030. return 1;
  1031. }
  1032. int NCDVal_ListReadHead (NCDValRef list, int num, ...)
  1033. {
  1034. ASSERT(NCDVal_IsList(list))
  1035. ASSERT(num >= 0)
  1036. struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx);
  1037. if (num > list_e->count) {
  1038. return 0;
  1039. }
  1040. va_list ap;
  1041. va_start(ap, num);
  1042. for (int i = 0; i < num; i++) {
  1043. NCDValRef *dest = va_arg(ap, NCDValRef *);
  1044. *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]);
  1045. }
  1046. va_end(ap);
  1047. return 1;
  1048. }
  1049. int NCDVal_IsMap (NCDValRef val)
  1050. {
  1051. NCDVal__AssertVal(val);
  1052. return NCDVal_Type(val) == NCDVAL_MAP;
  1053. }
  1054. NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount)
  1055. {
  1056. NCDVal__AssertMem(mem);
  1057. if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__map)) / sizeof(struct NCDVal__mapelem)) {
  1058. goto fail;
  1059. }
  1060. NCDVal__idx size = sizeof(struct NCDVal__map) + maxcount * sizeof(struct NCDVal__mapelem);
  1061. NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map));
  1062. if (idx < 0) {
  1063. goto fail;
  1064. }
  1065. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx);
  1066. map_e->type = make_type(NCDVAL_MAP, 0);
  1067. map_e->maxcount = maxcount;
  1068. map_e->count = 0;
  1069. NCDVal__MapTree_Init(&map_e->tree);
  1070. return NCDVal__Ref(mem, idx);
  1071. fail:
  1072. return NCDVal_NewInvalid();
  1073. }
  1074. int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val, int *out_inserted)
  1075. {
  1076. ASSERT(NCDVal_IsMap(map))
  1077. ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map))
  1078. ASSERT(key.mem == map.mem)
  1079. ASSERT(val.mem == map.mem)
  1080. NCDVal__AssertValOnly(map.mem, key.idx);
  1081. NCDVal__AssertValOnly(map.mem, val.idx);
  1082. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1083. int new_type = map_e->type;
  1084. if (!bump_depth(&new_type, NCDVal__Depth(key)) || !bump_depth(&new_type, NCDVal__Depth(val))) {
  1085. goto fail0;
  1086. }
  1087. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count);
  1088. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx);
  1089. ASSERT(me_e == &map_e->elems[map_e->count])
  1090. me_e->key_idx = key.idx;
  1091. me_e->val_idx = val.idx;
  1092. int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL);
  1093. if (!res) {
  1094. if (out_inserted) {
  1095. *out_inserted = 0;
  1096. }
  1097. return 1;
  1098. }
  1099. map_e->type = new_type;
  1100. map_e->count++;
  1101. if (out_inserted) {
  1102. *out_inserted = 1;
  1103. }
  1104. return 1;
  1105. fail0:
  1106. return 0;
  1107. }
  1108. size_t NCDVal_MapCount (NCDValRef map)
  1109. {
  1110. ASSERT(NCDVal_IsMap(map))
  1111. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1112. return map_e->count;
  1113. }
  1114. size_t NCDVal_MapMaxCount (NCDValRef map)
  1115. {
  1116. ASSERT(NCDVal_IsMap(map))
  1117. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1118. return map_e->maxcount;
  1119. }
  1120. int NCDVal_MapElemInvalid (NCDValMapElem me)
  1121. {
  1122. ASSERT(me.elemidx >= 0 || me.elemidx == -1)
  1123. return me.elemidx < 0;
  1124. }
  1125. NCDValMapElem NCDVal_MapFirst (NCDValRef map)
  1126. {
  1127. ASSERT(NCDVal_IsMap(map))
  1128. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1129. if (map_e->count == 0) {
  1130. return NCDVal__MapElem(-1);
  1131. }
  1132. NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0);
  1133. NCDVal__MapAssertElemOnly(map, elemidx);
  1134. return NCDVal__MapElem(elemidx);
  1135. }
  1136. NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me)
  1137. {
  1138. NCDVal__MapAssertElem(map, me);
  1139. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1140. ASSERT(map_e->count > 0)
  1141. NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1);
  1142. ASSERT(me.elemidx <= last_elemidx)
  1143. if (me.elemidx == last_elemidx) {
  1144. return NCDVal__MapElem(-1);
  1145. }
  1146. NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem);
  1147. NCDVal__MapAssertElemOnly(map, elemidx);
  1148. return NCDVal__MapElem(elemidx);
  1149. }
  1150. NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map)
  1151. {
  1152. ASSERT(NCDVal_IsMap(map))
  1153. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1154. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem);
  1155. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1156. return NCDVal__MapElem(ref.link);
  1157. }
  1158. NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me)
  1159. {
  1160. NCDVal__MapAssertElem(map, me);
  1161. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1162. NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx));
  1163. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1164. return NCDVal__MapElem(ref.link);
  1165. }
  1166. NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me)
  1167. {
  1168. NCDVal__MapAssertElem(map, me);
  1169. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1170. return NCDVal__Ref(map.mem, me_e->key_idx);
  1171. }
  1172. NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me)
  1173. {
  1174. NCDVal__MapAssertElem(map, me);
  1175. struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx);
  1176. return NCDVal__Ref(map.mem, me_e->val_idx);
  1177. }
  1178. NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key)
  1179. {
  1180. ASSERT(NCDVal_IsMap(map))
  1181. NCDVal__AssertVal(key);
  1182. struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx);
  1183. NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key);
  1184. ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1))
  1185. return NCDVal__MapElem(ref.link);
  1186. }
  1187. NCDValRef NCDVal_MapGetValue (NCDValRef map, const char *key_str)
  1188. {
  1189. ASSERT(NCDVal_IsMap(map))
  1190. ASSERT(key_str)
  1191. NCDValMem mem;
  1192. mem.size = NCDVAL_FASTBUF_SIZE;
  1193. mem.used = sizeof(struct NCDVal__externalstring);
  1194. mem.first_ref = -1;
  1195. struct NCDVal__externalstring *exs_e = (void *)mem.fastbuf;
  1196. exs_e->type = make_type(EXTERNALSTRING_TYPE, 0);
  1197. exs_e->data = key_str;
  1198. exs_e->length = strlen(key_str);
  1199. exs_e->ref.target = NULL;
  1200. NCDValRef key = NCDVal__Ref(&mem, 0);
  1201. NCDValMapElem elem = NCDVal_MapFindKey(map, key);
  1202. if (NCDVal_MapElemInvalid(elem)) {
  1203. return NCDVal_NewInvalid();
  1204. }
  1205. return NCDVal_MapElemVal(map, elem);
  1206. }
  1207. static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog)
  1208. {
  1209. ASSERT(idx >= 0)
  1210. NCDVal__AssertValOnly(mem, idx);
  1211. ASSERT(out_num_instr)
  1212. *out_num_instr = 0;
  1213. void *ptr = NCDValMem__BufAt(mem, idx);
  1214. struct NCDVal__instr instr;
  1215. switch (get_internal_type(*((int *)(ptr)))) {
  1216. case STOREDSTRING_TYPE:
  1217. case IDSTRING_TYPE:
  1218. case EXTERNALSTRING_TYPE: {
  1219. } break;
  1220. case NCDVAL_LIST: {
  1221. struct NCDVal__list *list_e = ptr;
  1222. for (NCDVal__idx i = 0; i < list_e->count; i++) {
  1223. int elem_changed = 0;
  1224. if (list_e->elem_indices[i] < -1) {
  1225. if (prog) {
  1226. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1227. instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX;
  1228. instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1229. prog->instrs[prog->num_instrs++] = instr;
  1230. }
  1231. (*out_num_instr)++;
  1232. elem_changed = 1;
  1233. } else {
  1234. size_t elem_num_instr;
  1235. replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog);
  1236. (*out_num_instr) += elem_num_instr;
  1237. if (elem_num_instr > 0) {
  1238. elem_changed = 1;
  1239. }
  1240. }
  1241. if (elem_changed) {
  1242. if (prog) {
  1243. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1244. instr.bumpdepth.parent_idx = idx;
  1245. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx);
  1246. prog->instrs[prog->num_instrs++] = instr;
  1247. }
  1248. (*out_num_instr)++;
  1249. }
  1250. }
  1251. } break;
  1252. case NCDVAL_MAP: {
  1253. struct NCDVal__map *map_e = ptr;
  1254. for (NCDVal__idx i = 0; i < map_e->count; i++) {
  1255. int key_changed = 0;
  1256. int val_changed = 0;
  1257. if (map_e->elems[i].key_idx < -1) {
  1258. if (prog) {
  1259. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1260. instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX;
  1261. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1262. prog->instrs[prog->num_instrs++] = instr;
  1263. }
  1264. (*out_num_instr)++;
  1265. key_changed = 1;
  1266. } else {
  1267. size_t key_num_instr;
  1268. replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog);
  1269. (*out_num_instr) += key_num_instr;
  1270. if (key_num_instr > 0) {
  1271. key_changed = 1;
  1272. }
  1273. }
  1274. if (map_e->elems[i].val_idx < -1) {
  1275. if (prog) {
  1276. instr.type = NCDVAL_INSTR_PLACEHOLDER;
  1277. instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX;
  1278. instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1279. prog->instrs[prog->num_instrs++] = instr;
  1280. }
  1281. (*out_num_instr)++;
  1282. val_changed = 1;
  1283. } else {
  1284. size_t val_num_instr;
  1285. replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog);
  1286. (*out_num_instr) += val_num_instr;
  1287. if (val_num_instr > 0) {
  1288. val_changed = 1;
  1289. }
  1290. }
  1291. if (key_changed) {
  1292. if (prog) {
  1293. instr.type = NCDVAL_INSTR_REINSERT;
  1294. instr.reinsert.mapidx = idx;
  1295. instr.reinsert.elempos = i;
  1296. prog->instrs[prog->num_instrs++] = instr;
  1297. }
  1298. (*out_num_instr)++;
  1299. if (prog) {
  1300. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1301. instr.bumpdepth.parent_idx = idx;
  1302. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx);
  1303. prog->instrs[prog->num_instrs++] = instr;
  1304. }
  1305. (*out_num_instr)++;
  1306. }
  1307. if (val_changed) {
  1308. if (prog) {
  1309. instr.type = NCDVAL_INSTR_BUMPDEPTH;
  1310. instr.bumpdepth.parent_idx = idx;
  1311. instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx);
  1312. prog->instrs[prog->num_instrs++] = instr;
  1313. }
  1314. (*out_num_instr)++;
  1315. }
  1316. }
  1317. } break;
  1318. default: ASSERT(0);
  1319. }
  1320. }
  1321. int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val)
  1322. {
  1323. NCDVal__AssertVal(val);
  1324. ASSERT(!NCDVal_IsPlaceholder(val))
  1325. size_t num_instrs;
  1326. replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL);
  1327. if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) {
  1328. BLog(BLOG_ERROR, "BAllocArray failed");
  1329. return 0;
  1330. }
  1331. o->num_instrs = 0;
  1332. size_t num_instrs2;
  1333. replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o);
  1334. ASSERT(num_instrs2 == num_instrs)
  1335. ASSERT(o->num_instrs == num_instrs)
  1336. return 1;
  1337. }
  1338. void NCDValReplaceProg_Free (NCDValReplaceProg *o)
  1339. {
  1340. BFree(o->instrs);
  1341. }
  1342. int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg)
  1343. {
  1344. NCDVal__AssertMem(mem);
  1345. ASSERT(replace)
  1346. for (size_t i = 0; i < prog.num_instrs; i++) {
  1347. struct NCDVal__instr instr = prog.instrs[i];
  1348. switch (instr.type) {
  1349. case NCDVAL_INSTR_PLACEHOLDER: {
  1350. #ifndef NDEBUG
  1351. NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1352. ASSERT(*check_plptr < -1)
  1353. ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid)
  1354. #endif
  1355. NCDValRef repval;
  1356. if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) {
  1357. return 0;
  1358. }
  1359. ASSERT(repval.mem == mem)
  1360. NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx);
  1361. *plptr = repval.idx;
  1362. } break;
  1363. case NCDVAL_INSTR_REINSERT: {
  1364. NCDVal__AssertValOnly(mem, instr.reinsert.mapidx);
  1365. struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx);
  1366. ASSERT(get_internal_type(map_e->type) == NCDVAL_MAP)
  1367. ASSERT(instr.reinsert.elempos >= 0)
  1368. ASSERT(instr.reinsert.elempos < map_e->count)
  1369. NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)};
  1370. NCDVal__MapTree_Remove(&map_e->tree, mem, ref);
  1371. if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) {
  1372. BLog(BLOG_ERROR, "duplicate key in map");
  1373. return 0;
  1374. }
  1375. } break;
  1376. case NCDVAL_INSTR_BUMPDEPTH: {
  1377. NCDVal__AssertValOnly(mem, instr.bumpdepth.parent_idx);
  1378. int *parent_type_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.parent_idx);
  1379. NCDVal__idx *child_type_idx_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.child_idx_idx);
  1380. NCDVal__AssertValOnly(mem, *child_type_idx_ptr);
  1381. int *child_type_ptr = NCDValMem__BufAt(mem, *child_type_idx_ptr);
  1382. if (!bump_depth(parent_type_ptr, get_depth(*child_type_ptr))) {
  1383. BLog(BLOG_ERROR, "depth limit exceeded");
  1384. return 0;
  1385. }
  1386. } break;
  1387. default: ASSERT(0);
  1388. }
  1389. }
  1390. return 1;
  1391. }