/* * Copyright (C) 2018 Jigsaw Operations LLC * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #define DNS_PORT 53 static int addr_comparator (void *unused, BAddr *v1, BAddr *v2); static struct SocksUdpClient_connection * find_connection_by_addr (SocksUdpClient *o, BAddr addr); static void init_localhost4(uint32_t *ip4); static void init_localhost6(uint8_t ip6[16]); static void socks_state_handler(struct SocksUdpClient_connection *con, int event); static void datagram_state_handler(struct SocksUdpClient_connection *con, int event); static void send_monitor_handler (struct SocksUdpClient_connection *con); static void recv_if_handler_send (struct SocksUdpClient_connection *con, uint8_t *data, int data_len); static struct SocksUdpClient_connection * connection_init(SocksUdpClient *o, BAddr local_addr, BAddr first_remote_addr, const uint8_t *first_data, int first_data_len); static void connection_free (struct SocksUdpClient_connection *con); static void connection_send (struct SocksUdpClient_connection *con, BAddr remote_addr, const uint8_t *data, int data_len); static void first_job_handler(struct SocksUdpClient_connection *con); static int compute_mtu(int udp_mtu); static int get_dns_id(BAddr *remote_addr, const uint8_t *data, int data_len); int addr_comparator (void *unused, BAddr *v1, BAddr *v2) { return BAddr_CompareOrder(v1, v2); } struct SocksUdpClient_connection * find_connection_by_addr (SocksUdpClient *o, BAddr addr) { BAVLNode *tree_node = BAVL_LookupExact(&o->connections_tree, &addr); if (!tree_node) { return NULL; } return UPPER_OBJECT(tree_node, struct SocksUdpClient_connection, connections_tree_node); } void init_localhost4(uint32_t *ip4) { *ip4 = 1<<24 | 127; } void init_localhost6(uint8_t ip6[16]) { memset(ip6, 0, 16); ip6[15] = 1; } void socks_state_handler(struct SocksUdpClient_connection *con, int event) { switch (event) { case BSOCKSCLIENT_EVENT_UP: { BIPAddr localhost; localhost.type = con->client->server_addr.type; if (localhost.type == BADDR_TYPE_IPV4) { init_localhost4(&localhost.ipv4); } else if (localhost.type == BADDR_TYPE_IPV6) { init_localhost6(localhost.ipv6); } else { BLog(BLOG_ERROR, "Bad address type"); } // This will unblock the queue of pending packets. BDatagram_SetSendAddrs(&con->socket, con->socks.bind_addr, localhost); } break; case BSOCKSCLIENT_EVENT_ERROR: { BLog(BLOG_ERROR, "Socks error event"); } // Fallthrough case BSOCKSCLIENT_EVENT_ERROR_CLOSED: { connection_free(con); } break; default: { BLog(BLOG_ERROR, "Unknown event"); } } } void datagram_state_handler(struct SocksUdpClient_connection *con, int event) { if (event == BDATAGRAM_EVENT_ERROR) { char local_buffer[BADDR_MAX_PRINT_LEN]; BAddr_Print(&con->local_addr, local_buffer); BLog(BLOG_ERROR, "Failing connection for %s due to a datagram send error", local_buffer); connection_free(con); } } void send_monitor_handler (struct SocksUdpClient_connection *con) { // The connection has passed its idle timeout. Remove it. connection_free(con); } void recv_if_handler_send(struct SocksUdpClient_connection *con, uint8_t *data, int data_len) { SocksUdpClient *o = con->client; DebugObject_Access(&con->client->d_obj); ASSERT(data_len >= 0) ASSERT(data_len <= compute_mtu(o->udp_mtu)) // accept packet PacketPassInterface_Done(&con->recv_if); // check header if (data_len < sizeof(struct socks_udp_header)) { BLog(BLOG_ERROR, "missing header"); return; } struct socks_udp_header *header = (struct socks_udp_header *)data; uint8_t *addr_data = data + sizeof(struct socks_udp_header); // parse address BAddr remote_addr; size_t addr_size; switch (header->atyp) { case SOCKS_ATYP_IPV4: { remote_addr.type = BADDR_TYPE_IPV4; struct socks_addr_ipv4 *addr_ipv4 = (struct socks_addr_ipv4 *)addr_data; remote_addr.ipv4.ip = addr_ipv4->addr; remote_addr.ipv4.port = addr_ipv4->port; addr_size = sizeof(*addr_ipv4); } break; case SOCKS_ATYP_IPV6: { remote_addr.type = BADDR_TYPE_IPV6; struct socks_addr_ipv6 *addr_ipv6 = (struct socks_addr_ipv6 *)addr_data; memcpy(remote_addr.ipv6.ip, addr_ipv6->addr, sizeof(remote_addr.ipv6.ip)); remote_addr.ipv6.port = addr_ipv6->port; addr_size = sizeof(*addr_ipv6); } break; default: { BLog(BLOG_ERROR, "Bad address type"); return; } } uint8_t *body_data = addr_data + addr_size; size_t body_len = data_len - (body_data - data); // check remaining data if (body_len > o->udp_mtu) { BLog(BLOG_ERROR, "too much data"); return; } // pass packet to user SocksUdpClient *client = con->client; client->handler_received(client->user, con->local_addr, remote_addr, body_data, body_len); if (con->dns_id >= 0) { // This connection has only been used for a single DNS query. int recv_dns_id = get_dns_id(&remote_addr, body_data, body_len); if (recv_dns_id == con->dns_id) { // We have now forwarded the response, so this connection is no longer needed. connection_free(con); } else { BLog(BLOG_INFO, "DNS client port received an unexpected non-DNS packet. " "Disabling DNS optimization."); con->dns_id = -1; } } } struct SocksUdpClient_connection *connection_init(SocksUdpClient *o, BAddr local_addr, BAddr first_remote_addr, const uint8_t *first_data, int first_data_len) { DebugObject_Access(&o->d_obj); ASSERT(o->num_connections <= o->max_connections) ASSERT(!find_connection_by_addr(o, local_addr)) char buffer[BADDR_MAX_PRINT_LEN]; BAddr_Print(&local_addr, buffer); BLog(BLOG_DEBUG, "Creating new connection for %s", buffer); // allocate structure struct SocksUdpClient_connection *con = (struct SocksUdpClient_connection *)malloc(sizeof(*con)); if (!con) { BLog(BLOG_ERROR, "malloc failed"); goto fail0; } // init arguments con->client = o; con->local_addr = local_addr; con->first_data = BAlloc(first_data_len); con->first_data_len = first_data_len; con->first_remote_addr = first_remote_addr; memcpy(con->first_data, first_data, first_data_len); con->dns_id = get_dns_id(&first_remote_addr, first_data, first_data_len); BPendingGroup *pg = BReactor_PendingGroup(o->reactor); // init first job, to send the first packet asynchronously. This has to happen asynchronously // because con->send_writer (a BufferWriter) cannot accept writes until after it is linked with // its PacketBuffer (con->send_buffer), which happens asynchronously. BPending_Init(&con->first_job, pg, (BPending_handler)first_job_handler, con); // Add the first job to the pending set. BPending acts as a LIFO stack, and first_job_handler // needs to run after async actions that occur in PacketBuffer_Init, so we need to put first_job // on the stack first. BPending_Set(&con->first_job); // Create a datagram socket if (!BDatagram_Init(&con->socket, con->local_addr.type, o->reactor, con, (BDatagram_handler)datagram_state_handler)) { BLog(BLOG_ERROR, "Failed to create a UDP socket"); goto fail1; } // Bind to 127.0.0.1:0 (or [::1]:0). Port 0 signals the kernel to choose an open port. BAddr socket_addr; socket_addr.type = local_addr.type; if (local_addr.type == BADDR_TYPE_IPV4) { init_localhost4(&socket_addr.ipv4.ip); socket_addr.ipv4.port = 0; } else if (local_addr.type == BADDR_TYPE_IPV6) { init_localhost6(socket_addr.ipv6.ip); socket_addr.ipv6.port = 0; } else { BLog(BLOG_ERROR, "Unknown local address type"); goto fail2; } if (!BDatagram_Bind(&con->socket, socket_addr)) { BLog(BLOG_ERROR, "Bind to localhost failed"); goto fail2; } // Bind succeeded, so the kernel has found an open port. // Update socket_addr to the actual port that was bound. uint16_t port; if (!BDatagram_GetLocalPort(&con->socket, &port)) { BLog(BLOG_ERROR, "Failed to get bound port"); goto fail2; } if (socket_addr.type == BADDR_TYPE_IPV4) { socket_addr.ipv4.port = port; } else { socket_addr.ipv6.port = port; } // Initiate connection to socks server if (!BSocksClient_Init(&con->socks, o->server_addr, o->auth_info, o->num_auth_info, socket_addr, true, (BSocksClient_handler)socks_state_handler, con, o->reactor)) { BLog(BLOG_ERROR, "Failed to initialize SOCKS client"); goto fail2; } // Ensure that the UDP handling pipeline can handle queries big enough to include // all data plus the SOCKS-UDP header. int socks_mtu = compute_mtu(o->udp_mtu); // Send pipeline: send_writer -> send_buffer -> send_monitor -> send_if -> socket. BDatagram_SendAsync_Init(&con->socket, socks_mtu); PacketPassInterface *send_if = BDatagram_SendAsync_GetIf(&con->socket); PacketPassInactivityMonitor_Init(&con->send_monitor, send_if, o->reactor, o->keepalive_time, (PacketPassInactivityMonitor_handler)send_monitor_handler, con); BufferWriter_Init(&con->send_writer, compute_mtu(o->udp_mtu), pg); if (!PacketBuffer_Init(&con->send_buffer, BufferWriter_GetOutput(&con->send_writer), PacketPassInactivityMonitor_GetInput(&con->send_monitor), SOCKS_UDP_SEND_BUFFER_PACKETS, pg)) { BLog(BLOG_ERROR, "Send buffer init failed"); goto fail3; } // Receive pipeline: socket -> recv_buffer -> recv_if BDatagram_RecvAsync_Init(&con->socket, socks_mtu); PacketPassInterface_Init(&con->recv_if, socks_mtu, (PacketPassInterface_handler_send)recv_if_handler_send, con, pg); if (!SinglePacketBuffer_Init(&con->recv_buffer, BDatagram_RecvAsync_GetIf(&con->socket), &con->recv_if, pg)) { BLog(BLOG_ERROR, "Receive buffer init failed"); goto fail4; } // insert to connections tree ASSERT_EXECUTE(BAVL_Insert(&o->connections_tree, &con->connections_tree_node, NULL)) o->num_connections++; return con; fail4: PacketPassInterface_Free(&con->recv_if); BDatagram_RecvAsync_Free(&con->socket); PacketBuffer_Free(&con->send_buffer); fail3: BufferWriter_Free(&con->send_writer); PacketPassInactivityMonitor_Free(&con->send_monitor); BDatagram_SendAsync_Free(&con->socket); fail2: BDatagram_Free(&con->socket); fail1: BPending_Free(&con->first_job); BFree(con->first_data); free(con); fail0: return NULL; } void connection_free (struct SocksUdpClient_connection *con) { SocksUdpClient *o = con->client; DebugObject_Access(&o->d_obj); // decrement number of connections o->num_connections--; // remove from connections tree BAVL_Remove(&o->connections_tree, &con->connections_tree_node); // Free UDP send pipeline components PacketBuffer_Free(&con->send_buffer); BufferWriter_Free(&con->send_writer); PacketPassInactivityMonitor_Free(&con->send_monitor); BDatagram_SendAsync_Free(&con->socket); // Free UDP receive pipeline components SinglePacketBuffer_Free(&con->recv_buffer); PacketPassInterface_Free(&con->recv_if); BDatagram_RecvAsync_Free(&con->socket); // Free UDP socket BDatagram_Free(&con->socket); // Free SOCKS client BSocksClient_Free(&con->socks); BPending_Free(&con->first_job); if (con->first_data) { BFree(con->first_data); } // free structure free(con); } void connection_send (struct SocksUdpClient_connection *con, BAddr remote_addr, const uint8_t *data, int data_len) { SocksUdpClient *o = con->client; DebugObject_Access(&o->d_obj); ASSERT(data_len >= 0) ASSERT(data_len <= o->udp_mtu) if (con->dns_id >= 0) { // So far, this connection has only sent a single DNS query. int new_dns_id = get_dns_id(&remote_addr, data, data_len); if (new_dns_id != con->dns_id) { BLog(BLOG_DEBUG, "Client reused DNS query port. Disabling DNS optimization."); con->dns_id = -1; } } // Check if we're sending to an IPv4 or IPv6 destination. int atyp; size_t address_size; // write address switch (remote_addr.type) { case BADDR_TYPE_IPV4: { atyp = SOCKS_ATYP_IPV4; address_size = sizeof(struct socks_addr_ipv4); } break; case BADDR_TYPE_IPV6: { atyp = SOCKS_ATYP_IPV6; address_size = sizeof(struct socks_addr_ipv6); } break; default: { BLog(BLOG_ERROR, "bad address type"); return; } } // Wrap the payload in a UDP SOCKS header. size_t socks_data_len = sizeof(struct socks_udp_header) + address_size + data_len; if (socks_data_len > compute_mtu(o->udp_mtu)) { BLog(BLOG_ERROR, "Packet is too big: %d > %d", socks_data_len, compute_mtu(o->udp_mtu)); return; } uint8_t *socks_data; if (!BufferWriter_StartPacket(&con->send_writer, &socks_data)) { BLog(BLOG_ERROR, "Send buffer is full"); return; } // Write header struct socks_udp_header *header = (struct socks_udp_header *)socks_data; header->rsv = 0; header->frag = 0; header->atyp = atyp; uint8_t *addr_data = socks_data + sizeof(struct socks_udp_header); switch (atyp) { case SOCKS_ATYP_IPV4: { struct socks_addr_ipv4 *addr_ipv4 = (struct socks_addr_ipv4 *)addr_data; addr_ipv4->addr = remote_addr.ipv4.ip; addr_ipv4->port = remote_addr.ipv4.port; } break; case SOCKS_ATYP_IPV6: { struct socks_addr_ipv6 *addr_ipv6 = (struct socks_addr_ipv6 *)addr_data; memcpy(addr_ipv6->addr, remote_addr.ipv6.ip, sizeof(addr_ipv6->addr)); addr_ipv6->port = remote_addr.ipv6.port; } break; } // write packet to buffer memcpy(addr_data + address_size, data, data_len); BufferWriter_EndPacket(&con->send_writer, socks_data_len); } void first_job_handler(struct SocksUdpClient_connection *con) { connection_send(con, con->first_remote_addr, con->first_data, con->first_data_len); BFree(con->first_data); con->first_data = NULL; con->first_data_len = 0; } int compute_mtu(int udp_mtu) { return udp_mtu + sizeof(struct socks_udp_header) + sizeof(struct socks_addr_ipv6); } int get_dns_id(BAddr *remote_addr, const uint8_t *data, int data_len) { if (BAddr_GetPort(remote_addr) == htons(DNS_PORT) && data_len >= 2) { return (data[0] << 8) + data[1]; } return -1; } void SocksUdpClient_Init (SocksUdpClient *o, int udp_mtu, int max_connections, btime_t keepalive_time, BAddr server_addr, const struct BSocksClient_auth_info *auth_info, size_t num_auth_info, BReactor *reactor, void *user, SocksUdpClient_handler_received handler_received) { ASSERT(udp_mtu >= 0) ASSERT(compute_mtu(udp_mtu) >= 0) ASSERT(max_connections > 0) // init arguments o->server_addr = server_addr; o->auth_info = auth_info; o->num_auth_info = num_auth_info; o->udp_mtu = udp_mtu; o->max_connections = max_connections; o->num_connections = 0; o->keepalive_time = keepalive_time; o->reactor = reactor; o->user = user; o->handler_received = handler_received; // limit max connections to number of conid's if (o->max_connections > UINT16_MAX + 1) { o->max_connections = UINT16_MAX + 1; } // init connections tree BAVL_Init(&o->connections_tree, OFFSET_DIFF(struct SocksUdpClient_connection, local_addr, connections_tree_node), (BAVL_comparator)addr_comparator, NULL); DebugObject_Init(&o->d_obj); } void SocksUdpClient_Free (SocksUdpClient *o) { // free connections while (!BAVL_IsEmpty(&o->connections_tree)) { struct SocksUdpClient_connection *con = UPPER_OBJECT(BAVL_GetFirst(&o->connections_tree), struct SocksUdpClient_connection, connections_tree_node); connection_free(con); } DebugObject_Free(&o->d_obj); } void SocksUdpClient_SubmitPacket (SocksUdpClient *o, BAddr local_addr, BAddr remote_addr, const uint8_t *data, int data_len) { DebugObject_Access(&o->d_obj); ASSERT(local_addr.type == BADDR_TYPE_IPV4 || local_addr.type == BADDR_TYPE_IPV6) ASSERT(remote_addr.type == BADDR_TYPE_IPV4 || remote_addr.type == BADDR_TYPE_IPV6) ASSERT(data_len >= 0) // lookup connection struct SocksUdpClient_connection *con = find_connection_by_addr(o, local_addr); if (!con) { if (o->num_connections == o->max_connections) { // Drop the packet. BLog(BLOG_ERROR, "Dropping UDP packet, reached max number of connections."); return; } // create new connection and enqueue the packet connection_init(o, local_addr, remote_addr, data, data_len); } else { // send packet connection_send(con, remote_addr, data, data_len); } }